BiocStyle::markdown() library(knitr)
This package and the underlying r Biocpkg("consensusSeekeR")
code are
distributed under the Artistic license 2.0. You are free to use and
redistribute this software.
If you use this package for a publication, we would ask you to cite the following:
Samb R, Khadraoui K, Belleau P, et al. (2015) Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling. Statistical Applications in Genetics and Molecular Biology. Published online before print December 10, 2015. doi:10.1515/sagmb-2014-0098
Genome data, such as genes, nucleosomes or
single-nucleotide polymorphisms (SNPs) are linked to the genome by
occupying either a range of
positions or a single position on the sequence. Genomic related data
integration is made possible by treating the data as
ranges on the genome [@Lawrence2013].
Bioconductor has developed an infrastructure, including packages such as
r Biocpkg("GenomicRanges")
, r Biocpkg("IRanges")
and
r Biocpkg("GenomicFeatures")
, which facilitate
the integrative statistical analysis of range-based genomic data.
Ranges format is a convenient way for the analysis of diffent experimental genomic data. As an example, the peak calling step, in the analysis of ChIP-seq data, commonly generates NarrowPeak outputs. The NarrowPeak format, wich is used by the ENCODE project [@Dunham2012a], includes a peak position located inside a genomic range.
In genomic analysis where feature identification generate a position value surrounded by a genomic range, such as ChIP-Seq peaks and nucleosome postions, the replication of an experiment may result in slight differences between predicted values. Conciliation of the results can be difficult, especially when many replicates are done. One current approach used to identify consensus regions in a group of results consist of extracting the overlapping regions of the genomic ranges. This approach, when used on a large number of experiments, can miss, as a side effect, regions when one of the experiment has missing or slightly shift features. On the other hand, the use of the union of the regions can result in wide consensus ranges.
As an example, the Figure \@ref(fig:peakRegion) shows, using Integrative genomics viewer [@Interests2011], two ChIP-Seq peaks from ENCODE for the FOSL2 transcription factor (DCC accession: ENCFF002CFN). The data have been analyzed using MACS2 [@Zhang2008] with the default parameters and the q-value set to 0.05. The ChIP-Seq peak is a genomic feature that can be defined by a position value (the peak position) and a genome range (the enriched region). This example shows that the peak position is not necessarily at the center of the enriched region.
knitr::include_graphics('figures/peak_and_region.jpg')
The r Biocpkg("consensusSeekeR")
package implements a novative way to
identify consensus which use the features positions, instead of the most
commonly used genomic ranges.
The r Biocpkg("consensusSeekeR")
package implements a novative way to
identify consensus
ranges in a group of experiments which generated position values
surrounded by genomic ranges. The r Biocpkg("consensusSeekeR")
package is
characterized by its use of the position values, instead of the genomic
ranges, to identify the consensus regions. The positions values have the
double advantages of being, most of the time,
the most important information from features and allowing creation of
consensius regions of smaller ranges.
Using iterative steps on ordered features position values from all experiments, a window of fixed size (specified by user) with the current feature position as starting point is set. All features which reside inside the window are gathered to calculate a median feature position which is then used to recreate a new window. This time, the new window has twice the size fixed by user and its center is the median feature position. An update of the features located inside the window is done and the median feature position is recalculated. This step is repeated up to the moment that the set of features remains identical between two iterations. The final set of features positions is used to fix the central position of the consensus region. This final region must respect the minimum number of experiments with at least one feature inside it to be retained as a final consensus region. The minimum number of experiments is set by the user. At last, the consensus region can be extended or/and shrinked to fit the regions associated to the position values present inside. If new features positions are added during the consensus region resizing, the iterative steps are not reprocessed. It is possible that the extension step adds new features in the extended consensus region. However, those new features ranges won't be taken into account during the extension step.
As with any R package, the r Biocpkg("consensusSeekeR")
package should
first be loaded with the following command:
library(consensusSeekeR)
The main function of the r Biocpkg("consensusSeekeR")
is
findConsensusPeakRegions
. The mains inputs of the findConsensusPeakRegions
function are:
GRanges
of the feature positions
of all experiments with a
metadata field called name
. GRanges
of the feature ranges
for all experiments with a metadata
field called name
. Beware that the GRanges
of the feature ranges
is only mandatory if the
expandToFitPeakRegion
parameter and/or the shrinkToFitPeakRegion
parameter
are set to TRUE
.
Both inputs must satify these conditions:
GRanges
must be named after the experiment source. All
entries from the same experiment must be assigned the same name.GRanges
. The metadata
field name
is used to associate the feature position to its range. This is an example showing how a metadata field name
can easily
be created and row names can be assigned:
### Load dataset data(A549_FOSL2_01_NarrowPeaks_partial) ### Remove dataset metadata field "name" A549_FOSL2_01_NarrowPeaks_partial$name <- NULL A549_FOSL2_01_NarrowPeaks_partial$score <- NULL A549_FOSL2_01_NarrowPeaks_partial$qValue <- NULL A549_FOSL2_01_NarrowPeaks_partial$pValue <- NULL A549_FOSL2_01_NarrowPeaks_partial$signalValue <- NULL A549_FOSL2_01_NarrowPeaks_partial$peak <- NULL
### Initial dataset without metadata field head(A549_FOSL2_01_NarrowPeaks_partial, n = 3) ### Adding a new metadata field "name" unique to each entry A549_FOSL2_01_NarrowPeaks_partial$name <- paste0("FOSL2_01_entry_", 1:length(A549_FOSL2_01_NarrowPeaks_partial)) ### Assign the same row name to each entry names(A549_FOSL2_01_NarrowPeaks_partial) <- rep("FOSL2_01", length(A549_FOSL2_01_NarrowPeaks_partial)) ### Final dataset with metadata field 'name' and row names head(A549_FOSL2_01_NarrowPeaks_partial, n = 3)
### Remove dataset rm(A549_FOSL2_01_NarrowPeaks_partial)
The chromosomes information is mandatory. It ensures that the consensus regions do not exceed the length of the chromosomes.
The chromosomes information is contained inside a Seqinfo
object. The
information from some UCSC genomes can be fetched automatically using
the r Biocpkg("GenomeInfoDb")
package.
### Import library library(GenomeInfoDb) ### Get the information for Human genome version 19 hg19Info <- Seqinfo(genome="hg19") ### Subset the object to keep only the analyzed chromosomes hg19Subset <- hg19Info[c("chr1", "chr10", "chrX")]
A Seqinfo
object can also be created using the chromosomes information
specific to the analyzed genome.
### Create an Seqinfo Object chrInfo <- Seqinfo(seqnames=c("chr1", "chr2", "chr3"), seqlengths=c(1000, 2000, 1500), isCircular=c(FALSE, FALSE, FALSE), genome="BioconductorAlien")
if (exists("chrInfo", inherits = FALSE)) rm(chrInfo) if (exists("hg19Subset", inherits = FALSE)) rm(hg19Subset) if (exists("hg19Info", inherits = FALSE)) rm(hg19Info)
The NarrowPeak format is often used to provide called peaks of signal
enrichment based on pooled, normalized data. The r Biocpkg("rtracklayer")
package has functions which faciliates the loading of NarrowPeak files.
Since the main function of the r Biocpkg("consensusSeekeR")
package needs 2
GRanges
objects, some manipulations are needed to create one GRanges
for
the regions and one GRanges
for the peaks.
### Load the needed packages library(rtracklayer) library(GenomicRanges) ### Demo file contained within the consensusSeekeR package file_narrowPeak <- system.file("extdata", "A549_FOSL2_ENCSR000BQO_MZW_part_chr_1_and_12.narrowPeak", package = "consensusSeekeR") ### Information about the extra columns present in the file need ### to be specified extraCols <- c(signalValue = "numeric", pValue = "numeric", qValue = "numeric", peak = "integer") ### Create genomic ranges for the regions regions <- import(file_narrowPeak, format = "BED", extraCols = extraCols) ### Create genomic ranges for the peaks peaks <- regions ranges(peaks) <- IRanges(start = (start(regions) + regions$peak), width = rep(1, length(regions$peak))) ### First rows of each GRanges object head(regions, n = 2) head(peaks, n = 2)
rm(peaks) rm(regions)
A simpler way is to use the readNarrowPeakFile
function of the
r Biocpkg("consensusSeekeR")
package which generates both
the peaks and the narrowPeak GRanges
.
library(consensusSeekeR) ### Demo file contained within the consensusSeekeR package file_narrowPeak <- system.file("extdata", "A549_FOSL2_ENCSR000BQO_MZW_part_chr_1_and_12.narrowPeak", package = "consensusSeekeR") ### Create genomic ranges for both the regions and the peaks result <- readNarrowPeakFile(file_narrowPeak, extractRegions = TRUE, extractPeaks = TRUE) ### First rows of each GRanges object head(result$narrowPeak, n = 2) head(result$peak, n = 2)
rm(result)
Global gene expression patterns are established and maintained by the concerted actions of Transcription Factors (TFs) and the proteins that constitute chromatin. The key structural element of chromatin is the nucleosome, which consists of an octameric histone core wrapped by 147 bps of DNA and connected to its neighbor by approximately 10-80 pbs of linker DNA [@Kornberg1999]. Nucleosome occupancy and positioning have been proved to be dynamic. It also has a major impact on expression, regulation, and evolution of eukaryotic genes [@Jiang2015].
With the development of Next-generation sequencing, nucleosome positioning using MNase-Seq data or MNase- or sonicated- ChIP-Seq data combined with either single-end or paired-end sequencing have evolved as popular techniques. Software such as PING [@Woo2013] and NOrMAL [@Polishko2012], generates output which contains the positions of the predicted nucleosomes, which simply are one base pair positions on the reference genome. This position represents the center of the predicted nucleosome. A range of $\pm$ 73 bps is usually superposed to the predicted nucleosome to repesent the nucleosome occupancy.
First, the r Biocpkg("consensusSeekeR")
package must be loaded.
library(consensusSeekeR)
The datasets, which are included in the r Biocpkg("consensusSeekeR")
package, have to be loaded. Those include results obtained using syntethic
reads distributed following a normal distribution with a variance of
20 from three different
nucleosome positioning software: PING [@Woo2013], NOrMAL [@Polishko2012] and
NucPosSimulator [@Schopflin2013]. The genomic ranges have been obtained by
adding $\pm$ 73 bps to the detected positions.
### Loading dataset from NOrMAL data(NOrMAL_nucleosome_positions) ; data(NOrMAL_nucleosome_ranges) ### Loading dataset from PING data(PING_nucleosome_positions) ; data(PING_nucleosome_ranges) ### Loading dataset from NucPosSimulator data(NucPosSimulator_nucleosome_positions) ; data(NucPosSimulator_nucleosome_ranges)
rownames(NOrMAL_nucleosome_positions) <- NULL rownames(NOrMAL_nucleosome_ranges) <- NULL
For the positions and ranges dataset from the same software, the name
field is paired to ensure that each position can be associated to its range.
The metadata field name
must be unique to each feature for all datasets.
### Each entry in the positions dataset has an equivalent metadata ### "name" entry in the ranges dataset head(NOrMAL_nucleosome_positions, n = 2) head(NOrMAL_nucleosome_ranges, n = 2)
To be able to identify all entries from the same software, each row of the dataset has to be assigned a name. All positions and ranges from the same source must be assigned identical row names. In this exemple, datasets are going to be identified by the name of their source software.
### Assigning software name "NOrMAL" names(NOrMAL_nucleosome_positions) <- rep("NOrMAL", length(NOrMAL_nucleosome_positions)) names(NOrMAL_nucleosome_ranges) <- rep("NOrMAL", length(NOrMAL_nucleosome_ranges)) ### Assigning experiment name "PING" names(PING_nucleosome_positions) <- rep("PING", length(PING_nucleosome_positions)) names(PING_nucleosome_ranges) <- rep("PING", length(PING_nucleosome_ranges)) ### Assigning experiment name "NucPosSimulator" names(NucPosSimulator_nucleosome_positions) <- rep("NucPosSimulator", length(NucPosSimulator_nucleosome_positions)) names(NucPosSimulator_nucleosome_ranges) <- rep("NucPosSimulator", length(NucPosSimulator_nucleosome_ranges)) ### Row names are unique to each software head(NOrMAL_nucleosome_positions, n = 2) head(PING_nucleosome_positions, n = 2) head(NucPosSimulator_nucleosome_positions, n = 2)
The consensus regions for chromosome 1 only are calculated
with a defaut region size of 50 bases pairs (2 * extendingSize
)
The regions are extended to include all nucleosome regions
(expandToFitPeakRegion
= TRUE
and shrinkToFitPeakRegion
= TRUE
).
To be retained as a consensus region, nucleosomes from at least 2
software must be present in the region (minNbrExp
= 2
).
.
### Only choromsome 1 is going to be analyzed chrList <- Seqinfo("chr1", 135534747, NA) ### Find consensus regions with both replicates inside it results <- findConsensusPeakRegions( narrowPeaks = c(NOrMAL_nucleosome_ranges, PING_nucleosome_ranges, NucPosSimulator_nucleosome_ranges), peaks = c(NOrMAL_nucleosome_positions, PING_nucleosome_positions, NucPosSimulator_nucleosome_positions), chrInfo = chrList, extendingSize = 25, expandToFitPeakRegion = TRUE, shrinkToFitPeakRegion = TRUE, minNbrExp = 2, nbrThreads = 1)
The output of findConsensusPeakRegions
function is a list containing an
object call
and an object consensusRanges
. The object call
contains the
matched call while the object consensusRanges
is a GRanges
containing the
consensus regions.
### Print the call results$call ### Print the 3 first consensus regions head(results$consensusRanges, n = 3)
A total of r length(results$consensusRanges)
consensus regions have been
found. An exemple of the consensus regions (in dark blue) is shown in
Figure \@ref(fig:nucleosomes) using
Integrative genomics viewer [@Interests2011]:
knitr::include_graphics('figures/nucleosomes.jpg')
### Remove dataset from NOrMAL rm(NOrMAL_nucleosome_positions) rm(NOrMAL_nucleosome_ranges) ### Remove dataset from PING rm(PING_nucleosome_positions) rm(PING_nucleosome_ranges) ### Remove dataset from NucPosSimulator rm(NucPosSimulator_nucleosome_positions) rm(NucPosSimulator_nucleosome_ranges)
Next-generation DNA sequencing coupled with chromatin immunoprecipitation (ChIP-seq) has changed the ability to interrogate the genomic landscape of histone modifications, transcriptional cofactors and transcription-factors binding in living cells [@Mundade2014]. Consortium, such as ENCODE have developed and are constantly updating a set of standards and guidelines for ChIP-Seq experiments [@Landt2012].
ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing. The obtained sequence reads are first mapped to the reference genome of the organism used in the experiments. Binding sites are then detected using software specialized in transcript factor binding sites identification, such as MACS2 [@Zhang2008] and PeakRanger [@Feng2011]. Peaks are defined as a single base pair position while statistically enriched regions are defined as genomic ranges.
The Encyclopedia of DNA Elements (ENCODE) Consortium is an international collaboration of research groups funded by the National Human Genome Research Institute. The ENCODE website is a portal giving access to the data generated by the ENCODE Consortium. The amount of data gathered is extensive. Moreover, for some experiments, more than one ChIP-Seq replicate is often available.
The software used to identify transcript factor binding sites generally generates a peak position and an enriched region for each binding site. However, it is quite unlikely that the exact peak position is exactly the same across replicates. Even more, there is not yet a consensus on how to analyze multiple-replicate ChIP-seq samples [@Yang2014].
The r Biocpkg("consensusSeekeR")
package can be used to identify consensus
regions for two or more replicates ChIP-Seq samples. The consensus regions
are being found by using the peak positions.
The transcription factor binding for the CTCF transcription factor have been analyzed and 2 replicates are available in BAM files format on ENCODE website (DCCs: ENCFF000MYJ and ENCFF000MYN). The NarrowPeaks were generated using MACS2 [@Zhang2008] with the default parameters and the q-value set to 0.05.
To simplify this demo, only part of genome hg19, chr1:246000000-249250621 and chr10:10000000-12500000, have been retained in the datasets.
First, the r Biocpkg("consensusSeekeR")
package must be loaded.
library(consensusSeekeR)
The datasets, which are included in the r Biocpkg("consensusSeekeR")
package, have to be loaded.
### Loading datasets data(A549_CTCF_MYN_NarrowPeaks_partial) ; data(A549_CTCF_MYN_Peaks_partial) data(A549_CTCF_MYJ_NarrowPeaks_partial) ; data(A549_CTCF_MYJ_Peaks_partial)
To be able to identify data from the same source, each row of the dataset
has to be assigned a source name. Beware that NarrowPeak
and Peak
datasets from the same source must be assigned identical names. In this
exemple, datasets are replicates of the same experiment. So, the names
"rep01" and "rep02" are going to be assigned to each dataset.
### Assigning experiment name "rep01" to the first replicate names(A549_CTCF_MYJ_NarrowPeaks_partial) <- rep("rep01", length(A549_CTCF_MYJ_NarrowPeaks_partial)) names(A549_CTCF_MYJ_Peaks_partial) <- rep("rep01", length(A549_CTCF_MYJ_Peaks_partial)) ### Assigning experiment name "rep02" to the second replicate names(A549_CTCF_MYN_NarrowPeaks_partial) <- rep("rep02", length(A549_CTCF_MYN_NarrowPeaks_partial)) names(A549_CTCF_MYN_Peaks_partial) <- rep("rep02", length(A549_CTCF_MYN_Peaks_partial))
The consensus regions for chromosome 10 only are calculated
with a defaut region size of 200 bases pairs (2 * extendingSize
)
The regions are extended to include all peaks regions
(expandToFitPeakRegion
= TRUE
and shrinkToFitPeakRegion
= TRUE
).
A peak from both replicates must be present withinin a region for it to be
retained as a consensus region.
### Only choromsome 10 is going to be analyzed chrList <- Seqinfo("chr10", 135534747, NA) ### Find consensus regions with both replicates inside it results <- findConsensusPeakRegions( narrowPeaks = c(A549_CTCF_MYJ_NarrowPeaks_partial, A549_CTCF_MYN_NarrowPeaks_partial), peaks = c(A549_CTCF_MYJ_Peaks_partial, A549_CTCF_MYN_Peaks_partial), chrInfo = chrList, extendingSize = 100, expandToFitPeakRegion = TRUE, shrinkToFitPeakRegion = TRUE, minNbrExp = 2, nbrThreads = 1)
The output of findConsensusPeakRegions
function is a list containing an
object call
and an object conesensusRanges
. The object call
contains the
matched call while the object conesensusRanges
is a GRanges
containing the
consensus regions.
### Print the call results$call ### Print the 3 first consensus regions head(results$consensusRanges, n = 3)
A total of r length(results$consensusRanges)
consensus regions have been
found. An example of the consensus regions (in green) is shown in
Figure \@ref(fig:ctcf), using Integrative genomics viewer [@Interests2011].
knitr::include_graphics('figures/ctcf_consensus.jpg')
### Remove datasets rm(A549_CTCF_MYN_NarrowPeaks_partial) rm(A549_CTCF_MYN_Peaks_partial) rm(A549_CTCF_MYJ_NarrowPeaks_partial) rm(A549_CTCF_MYJ_Peaks_partial)
The r Biocpkg("consensusSeekeR")
package can also be used to identify
consensus regions for two or more ChIP-Seq samples from multiple experiments.
The peak positions are the feature used to identify the consensus regions.
The transcription factor binding for the NR3C1 transcription factor have been analyzed in more than one experiment. For each experiment, replicates have been analyzed together using the irreproducible discovery rate method [@Li2011]. Results are available in bed narrowPeak format on ENCODE website (DCCs: ENCFF002CFQ, ENCFF002CFR and ENCFF002CFS) [@Dunham2012a].
To simplify this demo, only part of genome hg19, chr2:40000000-50000000 and chr3:10000000-13000000, have been retained in the datasets.
First, the r Biocpkg("consensusSeekeR")
package must be loaded.
library(consensusSeekeR)
The datasets, which are included in the r Biocpkg("consensusSeekeR")
package, have to be loaded.
### Loading datasets data(A549_NR3C1_CFQ_NarrowPeaks_partial) ; data(A549_NR3C1_CFQ_Peaks_partial) data(A549_NR3C1_CFR_NarrowPeaks_partial) ; data(A549_NR3C1_CFR_Peaks_partial) data(A549_NR3C1_CFS_NarrowPeaks_partial) ; data(A549_NR3C1_CFS_Peaks_partial)
To be able to identify data from the same source, each row of the dataset has to be assigned an experiment name. Beware that NarrowPeak and Peak datasets from the same source must be assigned identical names. In this exemple, datasets are coming from different experiments for the same transcription factor. So, the short name of each experiment "ENCFF002CFQ", "ENCFF002CFR" and "ENCFF002CFS" is going to be assigned to each dataset.
### Assign experiment name "ENCFF002CFQ" to the first experiment names(A549_NR3C1_CFQ_NarrowPeaks_partial) <- rep("ENCFF002CFQ", length(A549_NR3C1_CFQ_NarrowPeaks_partial)) names(A549_NR3C1_CFQ_Peaks_partial) <- rep("ENCFF002CFQ", length(A549_NR3C1_CFQ_Peaks_partial)) ### Assign experiment name "ENCFF002CFQ" to the second experiment names(A549_NR3C1_CFR_NarrowPeaks_partial) <- rep("ENCFF002CFR", length(A549_NR3C1_CFR_NarrowPeaks_partial)) names(A549_NR3C1_CFR_Peaks_partial) <- rep("ENCFF002CFR", length(A549_NR3C1_CFR_Peaks_partial)) ### Assign experiment name "ENCFF002CFQ" to the third experiment names(A549_NR3C1_CFS_NarrowPeaks_partial) <- rep("ENCFF002CFS", length(A549_NR3C1_CFS_NarrowPeaks_partial)) names(A549_NR3C1_CFS_Peaks_partial) <- rep("ENCFF002CFS", length(A549_NR3C1_CFS_Peaks_partial))
In ENCODE bed narrowPeak format, entries don't have a specific metadata field
called name
. So, to be able to use the findConsensusPeakRegions
function,
specific names must manually be added to each entry.
### Assign specific name to each entry of to first experiment ### NarrowPeak name must fit Peaks name for same experiment A549_NR3C1_CFQ_NarrowPeaks_partial$name <- paste0("NR3C1_CFQ_region_", 1:length(A549_NR3C1_CFQ_NarrowPeaks_partial)) A549_NR3C1_CFQ_Peaks_partial$name <- paste0("NR3C1_CFQ_region_", 1:length(A549_NR3C1_CFQ_NarrowPeaks_partial)) ### Assign specific name to each entry of to second experiment ### NarrowPeak name must fit Peaks name for same experiment A549_NR3C1_CFR_NarrowPeaks_partial$name <- paste0("NR3C1_CFR_region_", 1:length(A549_NR3C1_CFR_NarrowPeaks_partial)) A549_NR3C1_CFR_Peaks_partial$name <- paste0("NR3C1_CFR_region_", 1:length(A549_NR3C1_CFR_Peaks_partial)) ### Assign specific name to each entry of to third experiment ### NarrowPeak name must fit Peaks name for same experiment A549_NR3C1_CFS_NarrowPeaks_partial$name <- paste0("NR3C1_CFS_region_", 1:length(A549_NR3C1_CFS_NarrowPeaks_partial)) A549_NR3C1_CFS_Peaks_partial$name <- paste0("NR3C1_CFS_region_", 1:length(A549_NR3C1_CFS_Peaks_partial))
The consensus regions for chromosome 2 only are calculated
with a defaut region size of 400 bases pairs (2 * extendingSize
)
The regions are not extended to include all peaks regions but are shrinked
when exceeding peaks regions
(expandToFitPeakRegion
= FALSE
and shrinkToFitPeakRegion
= TRUE
).
A peak from 2 out of 3 experiments must be present in a region for it to be
retained as a consensus region.
### Only choromsome 2 is going to be analyzed chrList <- Seqinfo("chr2", 243199373, NA) ### Find consensus regions with both replicates inside it results <- findConsensusPeakRegions( narrowPeaks = c(A549_NR3C1_CFQ_NarrowPeaks_partial, A549_NR3C1_CFR_NarrowPeaks_partial, A549_NR3C1_CFS_NarrowPeaks_partial), peaks = c(A549_NR3C1_CFQ_Peaks_partial, A549_NR3C1_CFR_Peaks_partial, A549_NR3C1_CFS_Peaks_partial), chrInfo = chrList, extendingSize = 200, expandToFitPeakRegion = FALSE, shrinkToFitPeakRegion = TRUE, minNbrExp = 2, nbrThreads = 1)
The output of findConsensusPeakRegions
function is a list containing an
object call
and an object consensusRanges
. The object call
contains the
matched call while the object consensusRanges
is a GRanges
containing the
consensus regions.
### Print the call results$call ### Print the first 3 consensus regions head(results$consensusRanges, n = 3)
A total of r length(results$consensusRanges)
consensus regions have been
found. A example of the consensus regions (in green) is shown in Figure
\@ref(fig:NR3C1) using Integrative genomics viewer [@Interests2011].
knitr::include_graphics('figures/NR3C1_consensus.jpg')
### Remove datasets rm(A549_NR3C1_CFQ_NarrowPeaks_partial) rm(A549_NR3C1_CFQ_Peaks_partial) rm(A549_NR3C1_CFR_NarrowPeaks_partial) rm(A549_NR3C1_CFR_Peaks_partial) rm(A549_NR3C1_CFS_NarrowPeaks_partial) rm(A549_NR3C1_CFS_Peaks_partial)
The shrinkToFitPeakRegion
allows the resizing of the consensus region to fit
the minimum regions of the included features when those values are
included inside the initial consensus region. When the
extendingSize
parameter is large, the effect can be quite visible on the
final consensus regions. For exemple, Figure \@ref(fig:shrink) shows the
same region, from the NR3C1 example with extendingSize
of 200, when the
shrinkToFitPeakRegion
is set to TRUE
(green color) and to FALSE
(orange color) using Integrative genomics viewer [@Interests2011].
knitr::include_graphics('figures/shrink.jpg')
The expandToFitPeakRegion
allows the resizing of the consensus region to fit
the maximum of the included features when those values are
outside the initial consensus region. When the
extendingSize
parameter is small, the effect can be quite visible on the
final consensus regions. For exemple, the following figure shows the same
region, from the CTCF example with extendingSize
of 100, when the
shrinkToFitPeakRegion
is set to FALSE
(orange color) and
to TRUE
(green color).
knitr::include_graphics('figures/extendNew.jpg')
The value of the extendingSize
parameter can affect the final number of
consensus regions. While small extendingSize
value can miss some regions,
large extendingSize
value can gather consensus regions. Testing a range
of extendingSize
parameters can be an option worth considering.
As an example, the number of consensus regions obtained with different values
of extendingSize
is calculated.
``` {r sizeEffect, collapse=TRUE, eval=FALSE}
size <- c(1, 10, 50, 100, 300, 500, 750, 1000)
chrList <- Seqinfo("chr10", 135534747, NA)
resultsBySize <- lapply(size, FUN = function(size) findConsensusPeakRegions( narrowPeaks = c(A549_CTCF_MYJ_NarrowPeaks_partial, A549_CTCF_MYN_NarrowPeaks_partial), peaks = c(A549_CTCF_MYJ_Peaks_partial, A549_CTCF_MYN_Peaks_partial), chrInfo = chrList, extendingSize = size, expandToFitPeakRegion = TRUE, shrinkToFitPeakRegion = TRUE, minNbrExp = 2, nbrThreads = 1))
nbrRegions <- mapply(resultsBySize, FUN = function(x) return(length(x$consensusRanges)))
A graph can be used to visualize the variation of the number of consensus regions in function of the `extendingSize` parameter (see Figure \@ref(fig:sizeEffectG)). ```r library(ggplot2) data <- data.frame(extendingSize = size, nbrRegions = nbrRegions) ggplot(data, aes(extendingSize, nbrRegions)) + scale_x_log10("Extending size") + stat_smooth(se = FALSE, method = "loess", size=1.4) + ylab("Number of consensus regions") + ggtitle(paste0("Number of consensus regions in function of the extendingSize"))
knitr::include_graphics('figures/sizeEffect.jpg')
Due to the size of the analyzed genomes, the findConsensusPeakRegions
function can take a while to process. However, a job can be separated by
chromosome and run in parallel. This takes advantage of multiple
processors and reduce the total execution time. The number of threads
used can be set with
the nbrThreads
parameter in the findConsensusPeakRegions
function.
### Load data data(A549_FOSL2_01_NarrowPeaks_partial) ; data(A549_FOSL2_01_Peaks_partial) data(A549_FOXA1_01_NarrowPeaks_partial) ; data(A549_FOXA1_01_Peaks_partial) ### Assigning name "FOSL2" names(A549_FOSL2_01_NarrowPeaks_partial) <- rep("FOSL2", length(A549_FOSL2_01_NarrowPeaks_partial)) names(A549_FOSL2_01_Peaks_partial) <- rep("FOSL2", length(A549_FOSL2_01_Peaks_partial)) ### Assigning name "FOXA1" names(A549_FOXA1_01_NarrowPeaks_partial) <- rep("FOXA1", length(A549_FOXA1_01_NarrowPeaks_partial)) names(A549_FOXA1_01_Peaks_partial) <- rep("FOXA1", length(A549_FOXA1_01_Peaks_partial)) ### Two chromosomes to analyse chrList <- Seqinfo(paste0("chr", c(1,10)), c(249250621, 135534747), NA) ### Find consensus regions using 2 threads results <- findConsensusPeakRegions( narrowPeaks = c(A549_FOSL2_01_NarrowPeaks_partial, A549_FOXA1_01_Peaks_partial), peaks = c(A549_FOSL2_01_Peaks_partial, A549_FOXA1_01_NarrowPeaks_partial), chrInfo = chrList, extendingSize = 200, minNbrExp = 2, expandToFitPeakRegion = FALSE, shrinkToFitPeakRegion = FALSE, nbrThreads = 4)
We thank Imène Boudaoud for her advice on the vignette content.
Here is the output of sessionInfo()
on the system on which this document was
compiled:
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.