knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(mestrado) library(dplyr)
The function tidy_annotations()
is just a wrapper around purrr::map_dfr()
for stack up all the rds files generated by wavesurfer::annotator_app()
. (see vignette("04-data-annotation")
)
annotations_dir <- system.file("annotations", package = "mestrado") annotations_dir annotations <- tidy_annotations(annotations_dir)
glimpse(annotations) annotations %>% head() %>% knitr::kable()
By merging the slices of the wave files with the labels annotated in the previous step, we construct the final dataset with the response/targets ready for modelling. The function label_slices()
take the directory of slices and the annotations dataset as inputs. The output is a map between slice and label.
slices_dir <- system.file("wav_sample_slices_1000ms", package = "mestrado") slices_1000ms_labels <- label_slices( slices_dir, annotations, pattern = "Glaucidium|Megascops-atricapilla" )
glimpse(slices_1000ms_labels) slices_1000ms_labels %>% head() %>% knitr::kable()
# stores for later use saveRDS(slices_1000ms_labels, "../data_/slices_1000ms_labels_by_humans.rds")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.