Liebling & Zelen - Ball Bearing Fatigue Test

$$d_i=\begin{cases}1&\mbox{if the tube has failed}\\ 0&\mbox{if the tube has not failed}\end{cases}$$

$$f(x;p,n) = \left( \begin{array}{c} n \ x \end{array} \right)(p)^{x}(1 - p)^{(n-x)} \;\;\;\;\;\; \mbox{for x = 0, 1, 2,..., n}$$

As discussed in Chapter 2, $\pi_{i}$ represents the multinomial probability that a failure will occur in interval $i$.

$$\hat{p}{{MLE}}=\frac{x}{n}$$



Auburngrads/SMRD documentation built on Sept. 14, 2020, 2:21 a.m.