SMRD:::vinny() library(SMRD)
#time.column, ID.column, cost.count.column, event.column WorkStation.rdu <- frame.to.rdu(workstation, ID.column = "station", time.column = "days", event.column = "event") #attr(WorkStation.rdu,"WindowInfo") WorkStation.mcf <- mcf(WorkStation.rdu) #sqrt(WorkStation.mcf$Var) event.plot(WorkStation.rdu) plot(WorkStation.mcf)
ComputerLab.rdu <- frame.to.rdu(computerlab, ID.column = "computer", time.column = "days", event.column = "event") #attr(ComputerLab.rdu,"WindowInfo") ComputerLab.mcf <- mcf(ComputerLab.rdu) #sqrt(ComputerLab.mcf$Var) event.plot(ComputerLab.rdu) plot(ComputerLab.mcf)
ValveSeat.rdu <- frame.to.rdu(valveseat, ID.column = "engine", time.column = "days" , event.column = "event", data.title = "Valve-Seat Replacement Data", time.units = "Days") #attr(ValveSeat.rdu,"WindowInfo") summary(ValveSeat.rdu) event.plot(ValveSeat.rdu) mcf.plot(ValveSeat.rdu)
Cylinder.rdu <- frame.to.rdu(cylinder, ID.column = "engine", time.column = "days", event.column = "event", cost.count.column = "count", data.title = "Cylinder Replacement Data", time.units = "Days") #attr(Cylinder.rdu,"WindowInfo") PlotMCFandNHPP(Cylinder.rdu, form = "power rule") Cylinder.mcf <- mcf(Cylinder.rdu) plot(Cylinder.mcf)
Grids1.rdu <- frame.to.rdu(grids1, ID.column = "unit", time.column = "days", event.column = "event", data.title = "Grids1 Replacement Data", time.units = "Days") summary(Grids1.rdu) event.plot(Grids1.rdu) print(mcf(Grids1.rdu)) mcf.plot(Grids1.rdu) #attr(Grids1.rdu,"WindowInfo") PlotMCFandNHPP(Grids1.rdu, form = "power rule") Grids1.mcf <- mcf(Grids1.rdu) plot(Grids1.mcf)
Grids2.rdu <- frame.to.rdu(grids2, time.column = c(2), event.column = 3, ID.column = 1, data.title = "Grids2 Replacement Data", time.units ="Days") summary(Grids2.rdu) #attr(Grids2.rdu,"WindowInfo") PlotMCFandNHPP(Grids2.rdu, form = "power rule") Grids2.mcf <- mcf(Grids2.rdu) plot(Grids2.mcf) event.plot(Grids2.rdu) print(mcf(Grids2.rdu)) mcf.plot(Grids2.rdu) mcf.diff.plot(Grids1.rdu, Grids2.rdu, plot.seg = T, xlab = "Locomotive Age in Days", ylab = "Difference in Mean Cumulative Replacements")
halfbeak.rdu <- frame.to.rdu(halfbeak, ID.column = "unit", time.column = "hours" , event.column = "event", data.title = "Halfbeak Data", time.units = "Thousands of Hours of Operation") summary(halfbeak.rdu) event.plot(halfbeak.rdu) print(mcf(halfbeak.rdu)) mcf.plot(halfbeak.rdu) interarrival.times(halfbeak.rdu) mcf.plot(halfbeak.rdu, xlab = "Thousands of Hours of Operation", ylab = "Cumulative Number of Maintenance Actions")
interarrival.plot(halfbeak.rdu, xlab = "Thousands of Hours of Operation", ylab = "Thousands of Hours Between Maintenance Actions", my.title = "") ar1.plot(halfbeak.rdu, xlab = "Lagged Thousands of Hours Between Maintenance Actions", ylab = "Thousands of Hours Between Maintenance Actions") ar1.plot(halfbeak.rdu, xlab = "Lagged Thousands of Hours Between Maintenance Actions", ylab = "Thousands of Hours Between Maintenance Actions", plot.acf = T) fit.power.and.loglin.process(halfbeak.rdu, xlab = "Thousands of Hours of Operation", ylab = "Cumulative Number of Maintenance Actions") legend(SMRD:::x.loc(.01), SMRD:::y.loc(.95), legend = c("Nonparametric MCF estimate", "Log-linear Recurrence Rate NHPP MCF", "Power Recurrence Rate NHPP MCF"), lty = c(1,1,3), lwd = c(3,1,1)) repair.tsplot(halfbeak.rdu) interarrival.plot(halfbeak.rdu) ar1.plot(halfbeak.rdu) renewal.plots(halfbeak.rdu, which = 1) renewal.plots(halfbeak.rdu, which = 2) renewal.plots(halfbeak.rdu, which = 3) laplace.test(halfbeak.rdu) lewis.robinson.test(halfbeak.rdu) milhbk189.test(halfbeak.rdu) PlotMCFandNHPP(halfbeak.rdu, form = "power rule") PlotMCFandNHPP(halfbeak.rdu, form = "log linear")
#fit.power.process(halfbeak.rdu) #fit.loglin.process(halfbeak.rdu) fit.power.and.loglin.process(halfbeak.rdu) TestWindow(halfbeak[[1]],halfbeak[[2]],halfbeak[[3]],NULL) event.plot(halfbeak.rdu ) attr(halfbeak.rdu,"WindowInfo") TestWindow(halfbeak[[1]],halfbeak[[2]],halfbeak[[3]],NULL) RiskSet(halfbeak.rdu) halfbeak.mcf.out <- mcf(halfbeak.rdu) plot(halfbeak.mcf.out ) fit.power.and.loglin.process(halfbeak.rdu) NHPP.mle(halfbeak.rdu, form = "power rule") NHPP.mle(halfbeak.rdu, form = "log linear") PlotMCFandNHPP(halfbeak.rdu, form = "log linear") PlotMCFandNHPP(halfbeak.rdu, form = "power rule")
grampus.rdu <- frame.to.rdu(grampus, time.column = c(2), event.column = 3, data.title = "Grampus Data", ID.column = 1, time.units ="Thousands of Hours of Operation") summary(grampus.rdu) event.plot(grampus.rdu) print(mcf(grampus.rdu)) mcf(grampus.rdu) mcf.plot(grampus.rdu) interarrival.times(grampus.rdu) repair.tsplot(grampus.rdu) interarrival.plot(grampus.rdu) ar1.plot(grampus.rdu) renewal.plots(grampus.rdu, which = 1) renewal.plots(grampus.rdu, which = 2) renewal.plots(grampus.rdu, which = 3) milhbk189.test(grampus.rdu) lewis.robinson.test(grampus.rdu) laplace.test(grampus.rdu) PlotMCFandNHPP(grampus.rdu,form="power rule") PlotMCFandNHPP(grampus.rdu,form="log linear") fit.power.and.loglin.process(grampus.rdu)
PlotMCFandNHPP(grampus.rdu,form=c("power rule","log linear"))
mleprobplot(interarrival.times(grampus.rdu),"Weibull") mcf.plot(grampus.rdu, xlab = "Thousands of Hours of Operation", ylab = "Cumulative Number of Maintenance Actions") interarrival.plot(grampus.rdu, xlab = "Thousands of Hours of Operation", ylab = "Thousands of Hours Between Maintenance Actions", my.title = "") ar1.plot(grampus.rdu, xlab = "Lagged Thousands of Hours Between Maintenance Actions", ylab = "Thousands of Hours Between Maintenance Actions", my.title = "") fit.power.and.loglin.process(grampus.rdu, xlab = "Thousands of Hours of Operation", ylab = "Cumulative Number of Maintenance Actions") legend(SMRD:::x.loc(.02), SMRD:::y.loc(.98), legend = c("Nonparametric MCF estimate", "Log-linear Recurrence Rate NHPP MCF", "Power Recurrence Rate NHPP MCF"), lty=c(1,1,3), lwd=c(3,1,1)) lewis.robinson.test(grampus.rdu)
MachineH.rdu <- frame.to.rdu(machineh, ID.column = "unit", time.column = "hours", event.column = "event", cost.count.column = "cost", data.title = "Earth-Moving Machine Repair Labor Hours", time.units = "Hours of Operation") event.plot(MachineH.rdu, my.title = "", xlab = "Hours of Operation", which.system.to.plot = 1:23, ylab = "Machine Number") mcf.plot(MachineH.rdu, ylab = "Mean Cumulative Number of Labor Hours", plot.seg = T) event.plot(MachineH.rdu) attr(MachineH.rdu,"WindowInfo") MachineH.mcf <- mcf(MachineH.rdu) plot(MachineH.mcf) PlotMCFandNHPP(MachineH.rdu, form = "power rule")
R4490.rdu <- frame.to.rdu(r4490, ID.column = "vin", time.column = "days" , cost.count.column = "costcount" , event.column = "code") attr(R4490.rdu,"WindowInfo") event.plot(R4490.rdu) R4490.mcf <- mcf(R4490.rdu) plot(R4490.mcf)
R4490.nhpp.out <- PlotMCFandNHPP(R4490.rdu, form = "power rule") one.dim.profile(R4490.nhpp.out, size = 5, save.s = T) two.dim.profile(R4490.nhpp.out, profile.on.list = NULL, which = c(1,2), size = c(5,5)) profile.contour(R4490.nhpp.outstruct1x2, transformationy = "log", variable.namey = "sigma", variable.namex = "mu", v = c(0.001, 0.01, .1,0.2, 0.4, 0.7, 0.9) )
HPCRepairs.rdu <- frame.to.rdu(hpcrepairs, ID.column = "system", time.column = "months" , event.column = "event") attr(HPCRepairs.rdu,"WindowInfo") PlotMCFandNHPP(HPCRepairs.rdu, form = "power rule") HPCRepairs.mcf <- mcf(HPCRepairs.rdu) plot(HPCRepairs.mcf)
TestWindow(amsaaexactfail[[1]], amsaaexactfail[[2]], amsaaexactfail[[3]], NULL) AMSAAExactFail.rdu <- frame.to.rdu(amsaaexactfail, ID.column = "vehicle", time.column = "miles" , event.column = "event") names(attributes(AMSAAExactFail.rdu)) # testing the loglikelihood theta.mat <- matrix(c(1,1,2,2),2,2) #theta.mat <- c(1,2) loglikeNHPPvec(AMSAAExactFail.rdu, theta.mat, "power.law") TestLike(AMSAAExactFail.rdu, theta.mat, "power.law") theta.mat <- matrix(c(.01,.01,.02,.02),2,2) loglikeNHPPvec(AMSAAExactFail.rdu, theta.mat, "log.linear") attr(AMSAAExactFail.rdu,"WindowInfo") RiskSet(AMSAAExactFail.rdu) plotRiskSet(AMSAAExactFail.rdu,proportion = T) get.UnitID(AMSAAExactFail.rdu) mcf(AMSAAExactFail.rdu) event.plot(AMSAAExactFail.rdu) plotRiskSet(AMSAAExactFail.rdu,proportion = T) plot(mcf(AMSAAExactFail.rdu)) PlotMCFandNHPP(AMSAAExactFail.rdu, form = "log linear") AMSAAExactFail.nhpp.out <- PlotMCFandNHPP(AMSAAExactFail.rdu, form = "power rule") one.dim.profile(AMSAAExactFail.nhpp.out, size = 5, save.s = T)
AMSAAWindow1.rdu <- frame.to.rdu(amsaawindow1, ID.column ="vehicle", time.column ="miles", event.column = "event") attr(AMSAAWindow1.rdu,"WindowInfo") event.plot(AMSAAWindow1.rdu) RiskSet(AMSAAWindow1.rdu, JustEvent=F) plotRiskSet(AMSAAWindow1.rdu) plotRiskSet(AMSAAWindow1.rdu,proportion=T) plot(mcf(AMSAAWindow1.rdu)) PlotMCFandNHPP(AMSAAWindow1.rdu,form = "log linear") AMSAAWindow1.nhpp.out<- PlotMCFandNHPP(AMSAAWindow1.rdu, form = "power rule") one.dim.profile(AMSAAWindow1.nhpp.out, size = 5, save.s = T)
AMSAAWindow2.rdu <- frame.to.rdu(amsaawindow2, ID.column = "vehicle", time.column = "miles" , event.column = "event") attr(AMSAAWindow2.rdu,"WindowInfo") event.plot(AMSAAWindow2.rdu) RiskSet(AMSAAWindow2.rdu) RiskSet(AMSAAWindow2.rdu, JustEvent=F) plotRiskSet(AMSAAWindow2.rdu) plotRiskSet(AMSAAWindow2.rdu,proportion=T) mcf(AMSAAWindow2.rdu) plot(mcf(AMSAAWindow2.rdu))
PlotMCFandNHPP(AMSAAWindow2.rdu, form = "log linear") AMSAAWindow2.nhpp.out <- PlotMCFandNHPP(AMSAAWindow2.rdu, form = "power rule") one.dim.profile(AMSAAWindow2.nhpp.out, size = 5, save.s = T) two.dim.profile(AMSAAWindow2.nhpp.out, profile.on.list = NULL, which = c(1,2), size = c(5,5)) profile.contour(AMSAAWindow2.nhpp.outstruct1x2, transformationy = "log", variable.namey = "sigma", variable.namex = "mu", v = c(0.001, 0.01, 0.1, 0.2, 0.4, 0.7, 0.9)) AMSAAWindow2.nhpp.loglin.out <- PlotMCFandNHPP(AMSAAWindow2.rdu, form = "log linear") two.dim.profile(AMSAAWindow2.nhpp.loglin.out, which = c(1,2), size = c(9,9)) two.dim.profile(AMSAAWindow2.nhpp.loglin.out, profile.on.list = NULL, which = c(1,2), size = c(5,5), range.list = list(c(1.6,2.4),c(.00010,.00016))) profile.contour(AMSAAWindow2.nhpp.loglin.outstruct1x2, transformationy = "log", variable.namey = "sigma", variable.namex = "mu", v = c(0.001, 0.01, .1,0.2, 0.4, 0.7, 0.9) )
test.rdu <- frame.to.rdu(test, ID.column = "Unit", time.column = "Hours", event.column = "Event", data.title = "Test Data", time.units = "Thousands of Hours of Operation") summary(test.rdu) event.plot(test.rdu) event.plot(test.rdu) print(mcf(test.rdu)) mcf.plot(test.rdu) interarrival.times(test.rdu) mcf.plot(test.rdu, xlab="Thousands of Hours of Operation", ylab="Cumulative Number of Maintenance Actions") interarrival.plot(test.rdu, xlab = "Thousands of Hours of Operation", ylab = "Thousands of Hours Between Maintenance Actions", my.title = "") ar1.plot(test.rdu, xlab = "Lagged Thousands of Hours Between Maintenance Actions", ylab = "Thousands of Hours Between Maintenance Actions") ar1.plot(test.rdu, xlab = "Lagged Thousands of Hours Between Maintenance Actions", ylab = "Thousands of Hours Between Maintenance Actions", plot.acf = T) fit.power.and.loglin.process(test.rdu, xlab = "Thousands of Hours of Operation", ylab = "Cumulative Number of Mx Actions") legend(1.55474, 63.7603, legend = c("Nonparametric MCF estimate", "Log-linear Recurrence Rate NHPP MCF", "Power Recurrence Rate NHPP MCF"), lty = c(1,1,3), lwd = c(3,1,1)) repair.tsplot(test.rdu) interarrival.plot(test.rdu) ar1.plot(test.rdu) renewal.plots(test.rdu, which = 1) renewal.plots(test.rdu, which = 2) renewal.plots(test.rdu, which = 3) laplace.test(test.rdu) lewis.robinson.test(test.rdu) milhbk189.test(test.rdu) dump(c("loglikeNHPP", "TestLike", "Sxloglikenhpp", "flogrecurrate", "fmcfdiff", "flogrecurratepower", "flogrecurrateloglin", "fmcf", "fmcfpower", "fmcfloglin"),"nhpp.q")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.