SMRD:::vinny() library(SMRD)
DeviceA.ld <- frame.to.ld(devicea, data.title = "Device-A ALT Results", response.column = 1, time.units = "Hours", censor.column = 2, case.weight.column = 3, x.columns = 4, xlab = "Degrees C") print(DeviceA.ld) summary(DeviceA.ld) censored.data.plot(DeviceA.ld) censored.data.plot(DeviceA.ld, y.axis ="log", x.axis = "Arrhenius") groupi.mleprobplot(DeviceA.ld, distribution = "Weibull") four.groupi.mleprobplot(DeviceA.ld) DeviceA.weib.groupi <- groupi.mleprobplot(DeviceA.ld, distribution = "Weibull") print(DeviceA.weib.groupi) summary(DeviceA.weib.groupi) DeviceA.lognor.groupi <- groupi.mleprobplot(DeviceA.ld, distribution = "Lognormal") summary(DeviceA.lognor.groupi) failure.probabilities(DeviceA.lognor.groupi) quantiles(DeviceA.lognor.groupi) four.groupm.mleprobplot(DeviceA.ld, relationship = "Arrhenius") DeviceA.lognor.groupm <- groupm.mleprobplot(DeviceA.ld, distribution = "Lognormal", relationship = "Arrhenius") failure.probabilities(DeviceA.lognor.groupm, new.data = 10) quantiles(DeviceA.lognor.groupm, new.data = "10") plot(DeviceA.lognor.groupm) ## or, more specifically to get quantiles at 60 degrees C, quantiles(DeviceA.lognor.groupm, new.data = 60) ## failure probabilities at 60 and 10 degrees C, failure.probabilities(DeviceA.lognor.groupm, new.data = 60, time = c(1000,2000,5000,10000,20000,50000)) failure.probabilities(DeviceA.lognor.groupm, new.data = 10, time = c(1000,2000,5000,10000,20000,50000)) plot(DeviceA.lognor.groupm, censor.time = 5000, quant.lines = c(.01,.05,.1)) quantiles(DeviceA.lognor.groupm, new.data = 60, to = 0.2) failure.probabilities(DeviceA.lognor.groupm, new.data = 60, time.vec = c(10000,100000)) failure.probabilities(DeviceA.lognor.groupm, new.data = 60, time.vec = c(500,600,700,800,900,1000)) ## plot with a confidence interval for 10 degrees DeviceA.groupm.mleprobplot <- groupm.mleprobplot(DeviceA.ld, distribution = "Lognormal", relationship = "Arrhenius", ci.list = 1) print(DeviceA.groupm.mleprobplot, print.vcv = T, stress.state = 0) ## fix the activation energy to EA=.72 groupm.mleprobplot(DeviceA.ld, distribution = "Lognormal", relationship = "Arrhenius", ci.list = 1, theta.start = c(-13, 0.72, 0.99), parameter.fixed = c(F, T, F))
mylarpoly.ld <- frame.to.ld(mylarpoly, response.column = 1, x.column = 2, data.title = "Mylar-Polyurethane Insulating Structure", time.units = "Minutes", xlab = "kV/mm") mylarsub.ld <- frame.to.ld(mylarsub, response.column = 1, x.column = 2, data.title = "Mylar-Polyurethane Insulating Structure", time.units = "Minutes", xlab = "kV/mm") print(mylarpoly.ld) summary(mylarpoly.ld) censored.data.plot(mylarpoly.ld, x.axis = "log", y.axis = "log") mylarpoly.lognor.groupi <- groupi.mleprobplot(mylarpoly.ld, distribution = "Lognormal") text(-1.06459, -1.74056,"361.4 kV/mm") text(2.23807, -2.1,"219.0") text(3.88939, -2.1,"157.1") text(5.23223, -2.1,"122.4") text(6.90171, -2.1,"100.3") summary(mylarpoly.lognor.groupi, stress.state = 0) mylarsub.lognor.groupm <- groupm.mleprobplot(mylarsub.ld, distribution = "Lognormal", relationship = c("log"), new.data = c(50)) text(2.50825, -2.27,"219.0") text(3.83294, -2.27,"157.1") text(4.84914, -2.27,"122.4") text(5.95607, -2.27,"100.3") text(9.56722, -2.26083,"50 kV/mm") print(mylarsub.lognor.groupm, stress.state = 0) summary(mylarsub.lognor.groupm, stress.state = 0) plot(mylarsub.lognor.groupm) plot(mylarsub.lognor.groupm, data.ld = mylarpoly.ld, add.density.at = 50, xlim = c(31,400)) quantiles(mylarsub.lognor.groupm, new.data = 60, to = 0.2) failure.probabilities(mylarsub.lognor.groupm, new.data = 60) failure.probabilities(mylarsub.lognor.groupm, new.data = 60, time.vec = c(10,1000)) failure.probabilities(mylarsub.lognor.groupm, new.data = 50) quantiles(mylarsub.lognor.groupm, new.data = 50, to = 0.2) mylarpoly.lognor.groupm <- groupm.mleprobplot(mylarpoly.ld, distribution = "Lognormal", relationship = "class") ## example of bad model mylarpoly.lognor.groupm <- groupm.mleprobplot(mylarpoly.ld, distribution = "Lognormal", relationship = "log") plot(mylarpoly.lognor.groupm) mylarsub.lognor.groupm <- groupm.mleprobplot(mylarsub.ld, distribution = "Lognormal", relationship = "log") summary(mylarsub.lognor.groupm, stress.state = 0) quantiles(mylarsub.lognor.groupm, new.data = 50, to = 0.2) mylarpoly.lognor.groupm <- groupm.mleprobplot(mylarpoly.ld, distribution = "Lognormal", relationship = "log") summary(mylarpoly.lognor.groupm, stress.state = 0) quantiles(mylarpoly.lognor.groupm, new.data = 50, to = 0.2) failure.probabilities(mylarpoly.lognor.groupm, new.data = 50) plot(mylarpoly.lognor.groupm, add.density.at = 50, xlim = c(31,400), ylim=c(.1,10^8)) plot(mylarsub.lognor.groupm, data.ld = mylarpoly.ld, add.density.at = 50, xlim = c(31,400), ylim = c(.1,10^8)) ## make a model plot with detailed control of the x axis plot(mylarsub.lognor.groupm, data.ld = mylarpoly.ld, density.at = c(100.3,122.4,157.1,219,50), title.option = 'blank', xlab = 'kV/mm', hw.xaxis = list(ticlab = c(" 40", "100", "200","300", "400"), ticloc = c(" 40", " 50", " 60", " 70", " 80", " 90", "100", "120", "140", "160","180", "200", "250","300","350", "400")))
ICDevice2.ld <- frame.to.ld(icdevice2, response.column = c(1,2), censor.column = 3, case.weight.column = 4, x.column = 5, data.title = "New Technology Device ALT", xlabel = "Degrees C", time.units = "Hours") groupi.mleprobplot(ICDevice2.ld, distribution = "Lognormal") ICDevice02.groupm.lognor <- groupm.mleprobplot(ICDevice2.ld, distribution = "Lognormal", relationship = "Arrhenius", ci.list = 6) plot(ICDevice02.groupm.lognor, censor.time = 2304, quant.lines = c(.01,0.1, .5)) quantiles(ICDevice02.groupm.lognor, new.data = 100, to = 0.2) failure.probabilities(ICDevice02.groupm.lognor, new.data = 100, time.vec = c(500,1000)) ICDevice2.groupm.lognor.ea <- groupm.mleprobplot(ICDevice2.ld, distribution = "Lognormal", relationship = "Arrhenius", ci.list = 6, new.data = 100, theta.start = c(-10.2, 0.8, 0.5), parameter.fixed = c(F, T, F)) quantiles(ICDevice2.groupm.lognor.ea, new.data = 100, to = 0.2) failure.probabilities(ICDevice2.groupm.lognor.ea, new.data = 100, time.vec = c(500,1000)) plot(ICDevice2.groupm.lognor.ea, censor.time = 2304, quant.lines = c(.01,0.1, .5))
Tantalum.ld <- frame.to.ld(tantalum, response.column = 1, censor.column = 2, case.weight.column = 3, x.column = c(4, 5), data.title = "Tantalum Capacitor Data", time.units = "Hours", xlabel = c("Volts","DegreesC")) summary(Tantalum.ld) design.plot(Tantalum.ld) text(35.5864, 93.0106,"4/1000",cex = 1.2) text(40.6815, 93.0106,"4/200",cex = 1.2) text(46.5611, 93.0106,"2/50",cex = 1.2) text(51.5986, 93.0106,"4/53 ",cex = 1.2) text(46.3883, 53.8499,"6/502",cex = 1.2) text(56.9744, 53.8499,"1/50",cex = 1.2) text(46.4459, 10.737,"1/175",cex = 1.2) text(62.4743, 10.737,"18/174",cex = 1.2) title(main = "Tantalum Accelerated Life Test Setup") groupi.Tantalum <- groupi.mleprobplot(Tantalum.ld, distribution = "Weibull", group = c(1, 2)) summary(groupi.Tantalum) Tantalum.groupm.weib <- groupm.mleprobplot(Tantalum.ld, group.var = c(1,2), distribution = "Weibull", relationship = c("log","Arrhenius")) summary(Tantalum.groupm.weib, stress.state = 0) ## doing a conditional model plot plot(Tantalum.groupm.weib, fixed.other.values = "30", focus.variable = "celsius") plot(Tantalum.groupm.weib, focus.variable = "volts", fixed.other.values = 40) failure.probabilities(Tantalum.groupm.weib, new.data = "35;85" ) quantiles(Tantalum.groupm.weib, new.data = "35;85" ) Tantalum.groupm.weib <- groupm.mleprobplot(Tantalum.ld, group.var = c(1,2), distribution = "Weibull", relationship = c("log","Arrhenius"), formula = Location ~ + g(volts) + g(celsius) + g(volts):g(celsius))
Don't have this data set
classh.turn.ld <- frame.to.ld(classh, response.column = "Turn.hours", censor.column = "Turn.censor", x.columns = "Temp", data.title = "Class H Turn Failures") summary(classh.turn.ld) ## analyze the classh.turn failure-times censored.data.plot(classh.turn.ld, y.axis = "log", x.axis = "Arrhenius") classh.turn.groupi <- groupi.mleprobplot(classh.turn.ld, distribution = "Lognormal") summary(classh.turn.groupi) classh.turn.groupm <- groupm.mleprobplot(classh.turn.ld, distribution = "Lognormal", relationship = "Arrhenius") summary(classh.turn.groupm) plot(classh.turn.groupm) plot(classh.turn.groupm, density.at = c(180,190,200,220,240,260), censor.time = 12000, quant.lines = c(.01,.1,.5)) quantiles(classh.turn.groupm, new.data = 180) failure.probabilities(classh.turn.groupm, new.data = 180) ## get and analyze the ground failures classh.ground.ld <- frame.to.ld(classh, response.column = "Ground.hours", censor.column = "Ground.censor", x.columns = "Temp", data.title = "Class H Ground Failures") summary(classh.ground.ld) ## analyze the classh.ground failure-times censored.data.plot(classh.ground.ld, y.axis = "log", relationships = "Arrhenius") classh.ground.groupi <- groupi.mleprobplot(classh.ground.ld, distribution = "Lognormal") summary(classh.ground.groupi) classh.ground.groupm <- groupm.mleprobplot(classh.ground.ld, distribution = "Lognormal", relationship = "Arrhenius") summary(classh.ground.groupm) plot(classh.ground.groupm) ## get and analyze the phase failures classh.phase.ld <- frame.to.ld(classh, response.column = "Phase.hours", censor.column = "Phase.censor", x.columns = "Temp", data.title = "Class H Phase Failures") print(classh.phase.ld) summary(classh.phase.ld) censored.data.plot(classh.phase.ld, y.axis = "log", relationships = "Arrhenius") classh.phase.groupi <- groupi.mleprobplot(classh.phase.ld, distribution = "Lognormal") summary(classh.phase.groupi) classh.phase.groupm <- groupm.mleprobplot(classh.phase.ld, distribution = "Lognormal", relationship = "Arrhenius") summary(classh.phase.groupm) plot(classh.phase.groupm) quantiles(classh.phase.groupm, new.data = 180) failure.probabilities(classh.phase.groupm, new.data = 180) AlloyZ.groupm <- groupm.mleprobplot(AlloyZ.ld, distribution = "Weibull", relationship = "Log") plot(AlloyZ.groupm, density.at = c(20,50,100,200))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.