SMRD:::vinny() library(SMRD)
Resistor.rmd <- frame.to.rmd(resistor, response.column = "percent", time.column = "hours", unit.column = "resistor", data.title = "Carbon-Film Resistor Accelerated Test", response.units = "Percent Increase in Resistance", x.columns = "celsius" ) ## plot the degradation data plot(Resistor.rmd) plot(Resistor.rmd, y.axis = "log") plot(Resistor.rmd, y.axis = "sqrt") plot(Resistor.rmd, x.axis = "log") plot(Resistor.rmd, x.axis = "log", y.axis = "log", group.var = NA) names(Resistor.rmd) Resistor.ld1 <- rmd.to.ld(Resistor.rmd, fail.level = 5, subset = "hours > 0.6", censor.time = 35, x.axis = "sqrt") SMRD:::plot.rmd.average(Resistor.rmd) #issue SMRD:::plot.rmd.residual(Resistor.ld1) #issue Resistor.ld <- rmd.to.ld(Resistor.rmd, fail.level = 5, subset = "hours" > 0.6, censor.time = 35)
SMRD:::plot.rmd.residual(Resistor.ld) trellis.plot(Resistor.rmd, order.groups = F, outer.plot = F) trellis.plot(Resistor.rmd, order.groups = F, outer.plot = T, aspect = "fill") ## summarize the data print(Resistor.ld) summary(Resistor.ld) ## analyze the Resistor pseudo failure-time data censored.data.plot(Resistor.ld, x.axis = "log", y.axis = "Arrhenius") groupi.mleprobplot(Resistor.ld, distribution = "Lognormal") Resistor.groupm.out <- groupm.mleprobplot(Resistor.ld, distribution = "Lognormal", relationship = "Arrhenius", ci.list = 1) plot(Resistor.groupm.out, censor.time = 8000)
MetalWear.rmd <- frame.to.rmd(metalwear, response.column = 1, time.column = 3, unit.column = 2, data.title = "Sliding Metal Wear", x.columns = 4, skip = 1) plot(MetalWear.rmd) plot(MetalWear.rmd, x.axis="log", y.axis="log")
MetalWear.ld <- rmd.to.ld(MetalWear.rmd, fail.level = 50, ylim = c(2,100), xlim = c(2,1000), x.axis = "log", y.axis = "log") censored.data.plot(MetalWear.ld) censored.data.plot(MetalWear.ld, y.axis = "log", xlab = "Grams", ylab = "Cycles") MetalWear.groupi.out <- groupi.mleprobplot(MetalWear.ld, distribution = "Lognormal") MetalWear.groupm.out <- groupm.mleprobplot(MetalWear.ld, distribution = "lognormal", relationship = "class", ci.list = 1) MetalWear.groupm.out <- groupm.mleprobplot(MetalWear.ld, distribution = "lognormal", relationship = "linear", ci.list = 1) plot(MetalWear.groupm.out, censor.time = 500)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.