SMRD:::vinny() library(SMRD) library(DT)
## create the ddd data object Insulation.ddd <- frame.to.ddd(insulation, response.column = 3, time.column = 1, x.columns = 2, data.title = "Voltage Breakdown Data", response.units = "Volts", time.units = "Weeks") DT::datatable(Insulation.ddd)
Plot the data
plot(Insulation.ddd, transformation.Response = "log", transformation.time = "linear") tmp <- groupi.Dest.Degrad.indivplots(Insulation.ddd, transformation.response = "log", transformation.time = "linear", distribution = "normal") groupi.Dest.Degrad.oneplot(Insulation.ddd, transformation.response = "log", transformation.time = "linear", distribution = "normal")
Fit model using Nelson's parameterization and base 10 logs
groupm.Dest.Degrad(Insulation.ddd, distribution = "normal", transformation.response = "log10", transformation.x = "invtemp", transformation.time = "linear") groupm.Dest.Degrad(Insulation.ddd, distribution = "normal", transformation.response = "log", transformation.x = "arrhenius", transformation.time = "linear")
Do individual analyses at each level of temperature
Insulation.groupi.Dest.Degrad <- groupi.Dest.Degrad(Insulation.ddd, distribution = "normal", transformation.response = "log", transformation.time = "sqrt") plot(Insulation.groupi.Dest.Degrad, transformation.x = "Arrhenius")
Fit the arrhenius model; specify new data
Insulation.groupm.Dest.Degrad <- groupm.Dest.Degrad(Insulation.ddd, distribution = "normal", transformation.response = "log", transformation.x = "arrhenius", transformation.time = "sqrt") Insulation.groupm.Dest.Degrad <- groupm.Dest.Degrad(Insulation.ddd, distribution = "normal", transformation.response = "log", transformation.x = "arrhenius", transformation.time = "sqrt", new.data = c("150,260")) residual.plots(Insulation.groupm.Dest.Degrad)
Plot the failure time distribution for given failure levels
plot(Insulation.groupm.Dest.Degrad, FailLevel = 2) quantiles(Insulation.groupm.Dest.Degrad, FailLevel = 10, use.condition = 150) quantiles(Insulation.groupm.Dest.Degrad, FailLevel = 10, use.condition = 150, prob = 0.2) quantiles(Insulation.groupm.Dest.Degrad, FailLevel = 2, use.condition = 150) failure.probabilities(Insulation.groupm.Dest.Degrad, FailLevel = 2, use.condition = 150, time.vec = seq(6000,8000, by = 200))
This is a really messy set of data with slopes going in the wrong direction for some temps
AdhesiveStrength.ddd <- frame.to.ddd(adhesivestrength, response.column = "pounds", time.column = "days", x.columns = "celsius", data.title = "AdhesiveStrength Strength Data", time.units = "Days") AdhesiveStrength.gmle <- dest.degrad.mle(AdhesiveStrength.ddd, distribution = "normal", transformation.response = "log", transformation.x = "arrhenius", transformation.time = "linear") get.sub.model(AdhesiveStrength.gmle, c(50,60,70)) plot(AdhesiveStrength.ddd, transformation.response = "linear") plot(AdhesiveStrength.ddd, transformation.response = "log", transformation.time = "sqrt") AdhesiveStrength.groupi <- groupi.Dest.Degrad(AdhesiveStrength.ddd, transformation.response = "log", transformation.time = "sqrt", distribution = "normal") AdhesiveStrength.groupi <- groupi.Dest.Degrad(AdhesiveStrength.ddd, transformation.response = "log", transformation.time = "sqrt", distribution = "normal", sep = T) plot(AdhesiveStrength.groupi, transformation.x = "Arrhenius") AdhesiveStrength.groupm <- groupm.Dest.Degrad(AdhesiveStrength.ddd, distribution = "normal", transformation.response = "log", transformation.x = "Arrhenius", transformation.time = "sqrt")
This is used to compare with asym variances
## create the dd data object Insulation.test.ddd <- frame.to.ddd(insulation, response.column = 3, time.column = 1, x.columns = 2, data.title = "Voltage Breakdown Data", response.units = "Volts", time.units = "Weeks") DT::datatable(Insulation.test.ddd)
## plot the data plot(Insulation.test.ddd, transformation.response = "log", transformation.time = "linear")
Compare with Wayne Nelson's parameterization. Plots of voltage versus weeks will be the same, but coefficients depend on transformation details shown in the title
plot(Insulation.test.ddd, transformation.response = "log10") Insulation.groupi.Dest.Degrad <- groupi.Dest.Degrad(Insulation.test.ddd, distribution = "normal", transformation.response = "log10", transformation.time = "linear") plot(Insulation.groupi.Dest.Degrad, transformation.x = "arrhenius") plot(Insulation.groupi.Dest.Degrad, transformation.x = "invtemp") Insulation.groupi.Dest.Degrad <- groupi.Dest.Degrad(Insulation.test.ddd, distribution = "normal", transformation.response = "log", transformation.time = "linear") plot(Insulation.groupi.Dest.Degrad, transformation.x = "arrhenius") plot(Insulation.groupi.Dest.Degrad, transformation.x = "invtemp") tmp10 <- groupm.Dest.Degrad(Insulation.test.ddd, distribution = "normal", transformation.response = "log10", transformation.x = "invtemp", transformation.time = "linear") tmp <- groupm.Dest.Degrad(Insulation.test.ddd, distribution = "normal", transformation.response = "log", transformation.x = "arrhenius", transformation.time = "linear") plot(tmp,FailLevel = 10)
Fit model using Wayne Nelson's parameterization and base 10 logs
dest.degrad.mle(Insulation.test.ddd, distribution = "normal", transformation.response = "log10", transformation.x = "invtemp", transformation.time = "linear")
Do individual analyses at each level of temperature
Insulation.test.groupi.Dest.Degrad <- groupi.Dest.Degrad(Insulation.test.ddd, transformation.response = "log", transformation.time = "sqrt", distribution = "normal") ## print.default(attr(InsulationBrkdwn.test.groupi.Dest.Degrad.out, "data.ddd")) plot(Insulation.test.groupi.Dest.Degrad, transformation.x = "Arrhenius")
Fit the arrhenius model; specify new data
Insulation.test.groupm.Dest.Degrad.out <- groupm.Dest.Degrad(Insulation.test.ddd, distribution = "normal", transformation.response = "log", transformation.x = "arrhenius", transformation.time = "linear", new.data = c("150,200,260"))
Plot the failure time distribution for given failure levels
plot(Insulation.test.groupm.Dest.Degrad.out, FailLevel = 2) plot(Insulation.test.groupm.Dest.Degrad.out, FailLevel = 10) quantiles(Insulation.test.groupm.Dest.Degrad.out, FailLevel = 10, use.condition = 150) quantiles(Insulation.test.groupm.Dest.Degrad.out, FailLevel = 10, use.condition = 150, prob = 0.2) quantiles(Insulation.test.groupm.Dest.Degrad.out, FailLevel = 2, use.condition = 150) failure.probabilities(Insulation.test.groupm.Dest.Degrad.out, FailLevel = 2, use.condition = 150, time.vec = c(300000,350000)) failure.probabilities(Insulation.test.groupm.Dest.Degrad.out, FailLevel = 2, use.condition = 150) res <- c(-0.005080116, -0.008051072, -0.015674764)
AdhesiveBondC.ddd <- frame.to.ddd(adhesivebondc, response.column = "pounds", x.columns = c("celsius","rh"), time.column = "days") plot(AdhesiveBondC.ddd, transformation.response = "log", transformation.time = "Square root")
Plot both; multipleplot
tmp <- groupi.Dest.Degrad.indivplots(AdhesiveBondC.ddd, transformation.response = "log", transformation.time = "linear", distribution = "normal")
Plot both; single plot
groupi.Dest.Degrad.oneplot(AdhesiveBondC.ddd, transformation.response = "log", transformation.time = "linear", distribution = "normal")
Single plot
AdhesiveBondC.groupi.Dest.Degrad.out <- groupi.Dest.Degrad(AdhesiveBondC.ddd, distribution = "normal", transformation.response = "log", transformation.time = "sqrt") plot(AdhesiveBondC.groupi.Dest.Degrad.out, transformation.x = "Arrhenius") plot(AdhesiveBondC.groupi.Dest.Degrad.out, transformation.x = "Humidity", focus.variable = 2) ## or more simply plot(AdhesiveBondC.groupi.Dest.Degrad.out, transformation.x = "Arrhenius") plot(AdhesiveBondC.groupi.Dest.Degrad.out, transformation.x = "Arrhenius") AdhesiveBondC.groupm.Dest.Degrad.out <- groupm.Dest.Degrad(AdhesiveBondC.ddd, distribution = "normal", transformation.response = "log", transformation.x = c( "Arrhenius","humidity"), transformation.time = "linear") AdhesiveBondC.groupm.Dest.Degrad.out <- groupm.Dest.Degrad(AdhesiveBondC.ddd, distribution = "normal", transformation.response = "log", transformation.x = c( "Arrhenius","humidity"), transformation.time = "linear", new.data = c("25;30"), FailLevel = 2.4) AdhesiveBondC.groupm.Dest.Degrad.out <- groupm.Dest.Degrad(AdhesiveBondC.ddd, distribution = "Normal", transformation.response = "Log", transformation.time = "Linear", transformation.x = c("Arrhenius", "Humidity"), FailLevel = 2.4, power = numeric(0), PlotFailDefLine = T, subset = T, new.data = "25;30,30;30") plot(AdhesiveBondC.groupm.Dest.Degrad.out, FailLevel = 2.4) quantiles(AdhesiveBondC.groupm.Dest.Degrad.out, FailLevel = 2.4, use.condition = c("25;30")) failure.probabilities(AdhesiveBondC.groupm.Dest.Degrad.out, FailLevel = 2.4, use.condition = c("25;30"), time.vec = c(2500,4000))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.