# ANF: Fuse affinity networks (i.e., matrices) through one-step or... In BeautyOfWeb/ANF: Affinity Network Fusion for Complex Patient Clustering

## Description

Fuse affinity networks (i.e., matrices) through one-step or two-step random walk

## Usage

 ```1 2``` ```ANF(Wall, K = 20, weight = NULL, type = c("two-step", "one-step"), alpha = c(1, 1, 0, 0, 0, 0, 0, 0), verbose = FALSE) ```

## Arguments

 `Wall` a list of affinity matrices of the same shape. `K` the number of k nearest neighbors for function kNN_graph `weight` a list of non-negative real numbers (which will be normalized internally so that it sums to 1) that one-to-one correspond to the affinity matrices included in 'Wall'. If not set, internally uniform weights are assigned to all affinity matrices in 'Wall'. `type` choose one of the two options: perform "one-step" random walk, or "two-step" random walk on the list of affinity matrices in 'Wall“ to generate a fused affinity matrix. Default: "two-step" random walk `alpha` a list of eight non-negative real numbers (which will be normalized internally to make it sums to 1). Only used when "two-step" (default value of 'type') random walk is used. 'alpha' is the weights for eight terms in the "two-step" random walk formula (check research paper for more explanations about the terms). Default value: (1, 1, 0, 0, 0, 0, 0, 0), i.e., only use the first two terms (since they are most effective in practice). `verbose` logical(1); if true, print some information

## Value

a fused transition matrix (representing a fused network)

## Examples

 ```1 2 3 4 5``` ```D1 = matrix(runif(400), nrow=20) W1 = affinity_matrix(D1, 5) D2 = matrix(runif(400), nrow=20) W2 = affinity_matrix(D1, 5) W = ANF(list(W1, W2), K=10) ```

BeautyOfWeb/ANF documentation built on May 28, 2019, 11:57 a.m.