knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
bllflow builds from the tableone
package to present the study cohort and description statistics. Also planned are tools to help create a study codebook.
Create "Table 1- description of study data" for all variables in your database. This method is from the tableone
package.
library(survival) data(pbc) library("tableone") cat_vars <- c("status", "trt", "ascites", "hepato", "spiders", "edema", "stage") create_table_one(data = pbc, factorVars = cat_vars)
Create a Table 1 with only the variables in your model, using the Model Specification Workbook. First initialize the BLLFlow model.
library(bllflow) variables_sheet <- read.csv(file.path(getwd(), '../inst/extdata/PBC-variables.csv')) variables_details_sheet <- read.csv(file.path(getwd(), '../inst/extdata/PBC-variableDetails.csv')) pbc_model <- BLLFlow(pbc, variables_sheet, variables_details_sheet) create_table_one(pbc_model)
You can stratify Table 1 in two methods.
1) Stratify with columns. This is how to describe your data for manuscripts. This method is supported with the create_table_one
library.
table_one <- create_table_one(data = pbc,strata = c("trt"), factorVars = cat_vars)
2) Stratify with rows. This method is helpful if there are many strata. We use this format for interactive visualizations or when we create figures. For example, see an 'algorithm viewer' that shows Table 1 stratified for 61 strata (bins).
table_one_long <- summary_data_long(table_one)
For all tables, metadata such as labels are added from the Model Specification Workbook and/or DDI documents. Initialize the model with the DDI document.
ddi <- bllflow::ReadDDI(system.file("extdata", "", package = "bllflow"), "pbcDDI.xml") pbc_model <- bllflow::update_msw(BLL_model = pbc_model, new_DDI = ddi) long_table_with_labels <- summary_data_long(table_one = table_one, bllflow_model = pbc_model, long_table = table_one_long)
Our team works with personal health data in secure settings. For privacy, no summary tables can be exported from the data centre with small cells.
table_one <- create_table_one(data = pbc,strata = c("trt","stage"), factor_vars = cat_vars) checked_table_one <- check_small_cells(table_one)
To obtain print of the actual small cells pass print as TRUE
checked_table_one <- check_small_cells(table_one, print = TRUE)
Find out which rows and variables contain the small cells.
checked_table_one$MetaData$small_cells
You can also check small cells inside your Summary Data in case you have multiple tables
checked_long_table <- check_small_cells(long_table_with_labels)
For a print of the found rows pass print as TRUE
checked_long_table <- check_small_cells(long_table_with_labels, print = TRUE)
Find out which rows and variables contain the small cells.
checked_long_table$MetaData$small_cells
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.