README.md

MeCDC

Simplified access to some data from Maine CDC, in particular COVID-19.

Maine's CDC data is augmented by the COVID19 data hub historical cumulative counts. This data lags Maine's by one or two days.

While this has been developed for Computational Oceanography Lab coding ecosystem and Bigelow Lab it would be easy to adapt to other settings.

Requirements

Installation

remotes::install_github("BigelowLab/MeCDC"")

Usage

Fetch the daily update of cumumaltive cases from Maine CDC.

library(MeCDC)
x <- fetch_covid_cumulative()
x
# Simple feature collection with 16 features and 13 fields
# geometry type:  MULTIPOLYGON
# dimension:      XY
# bbox:           xmin: -71.08392 ymin: 42.97776 xmax: -66.9499 ymax: 47.45969
# epsg (SRID):    4326
# proj4string:    +proj=longlat +datum=WGS84 +no_defs
# # A tibble: 16 x 14
#    date  geoid County    pop density Confirmed Recovered Hospitalizations Deaths dConfirmed dRecovered dHospitalizatio…  dDeaths
#    <chr> <chr> <chr>   <dbl>   <dbl>     <dbl>     <dbl>            <dbl>  <dbl>      <dbl>      <dbl>            <dbl>    <dbl>
#  1 2020… 23001 Andro… 107679  230.          36        19               11      1     0.334      0.176            0.102   0.00929
#  2 2020… 23003 Aroos…  67111   10.1          2         1               NA     NA     0.0298     0.0149          NA      NA      
#  3 2020… 23005 Cumbe… 293557  351.         386       212               59     17     1.31       0.722            0.201   0.0579 
#  4 2020… 23007 Frank…  29897   17.6         13         5                1     NA     0.435      0.167            0.0334 NA      
#  5 2020… 23009 Hanco…  54811   34.5          6         2                1     NA     0.109      0.0365           0.0182 NA      
#  6 2020… 23011 Kenne… 122083  141.          97        24               14      4     0.795      0.197            0.115   0.0328 
#  7 2020… 23013 Knox    39771  109.          13         8                2     NA     0.327      0.201            0.0503 NA      
#  8 2020… 23015 Linco…  34342   75.3         12         8               NA     NA     0.349      0.233           NA      NA      
#  9 2020… 23017 Oxford  57618   27.7         14        10                1     NA     0.243      0.174            0.0174 NA      
# 10 2020… 23019 Penob… 151096   44.5         46        32                8     NA     0.304      0.212            0.0529 NA      
# 11 2020… 23021 Pisca…  16800    4.24         1         1               NA     NA     0.0595     0.0595          NA      NA      
# 12 2020… 23023 Sagad…  35634  140.          17         9                5     NA     0.477      0.253            0.140  NA      
# 13 2020… 23025 Somer…  50592   12.9         16         4               NA     NA     0.316      0.0791          NA      NA      
# 14 2020… 23027 Waldo   39694   54.4         43         5                1      8     1.08       0.126            0.0252  0.202  
# 15 2020… 23029 Washi…  31490   12.3          2         2               NA     NA     0.0635     0.0635          NA      NA      
# 16 2020… 23031 York   206229  208.         183       101               36      6     0.887      0.490            0.175   0.0291 
# # … with 1 more variable: geometry <MULTIPOLYGON [°]>

Or read an archived version.

x <- read_covid_cumulative("2020-04-21")

Make a graphics that shows cumulative counts and density by county.

plot_cumulative(x)

COVID19 data hub

COVID19 data hub can be read using

datahub <- read_covid19datahub()
tail(datahub)
# # A tibble: 6 x 6
#   County Confirmed Recovered Hospitalizations Deaths date      
#   <chr>      <dbl>     <dbl>            <dbl>  <dbl> <date>    
# 1 York         156         0                0      4 2020-04-15
# 2 York         164         0                0      6 2020-04-16
# 3 York         170         0                0      6 2020-04-17
# 4 York         175         0                0      6 2020-04-18
# 5 York         177         0                0      6 2020-04-19
# 6 York         181         0                0      6 2020-04-20

You can combine any given day's data with the county geometry.

recent <- merge_covid_census(datahub %>% dplyr::filter(date == as.Date("2020-04-20")))
recent
# Simple feature collection with 16 features and 13 fields
# geometry type:  MULTIPOLYGON
# dimension:      XY
# bbox:           xmin: -71.08392 ymin: 42.97776 xmax: -66.9499 ymax: 47.45969
# CRS:            4326
# # A tibble: 16 x 14
#    date       geoid County    pop density Confirmed Recovered Hospitalizations Deaths dConfirmed dRecovered
#    <date>     <chr> <chr>   <dbl>   <dbl>     <dbl>     <dbl>            <dbl>  <dbl>      <dbl>      <dbl>
#  1 2020-04-20 23001 Andro… 107679  230.          35         0                0      1     0.325           0
#  2 2020-04-20 23003 Aroos…  67111   10.1          2         0                0      0     0.0298          0
#  3 2020-04-20 23005 Cumbe… 293557  351.         380         0                0     16     1.29            0
#  4 2020-04-20 23007 Frank…  29897   17.6         13         0                0      0     0.435           0
#  5 2020-04-20 23009 Hanco…  54811   34.5          6         0                0      0     0.109           0
#  6 2020-04-20 23011 Kenne… 122083  141.          97         0                0      4     0.795           0
#  7 2020-04-20 23013 Knox    39771  109.          12         0                0      0     0.302           0
#  8 2020-04-20 23015 Linco…  34342   75.3         12         0                0      0     0.349           0
#  9 2020-04-20 23017 Oxford  57618   27.7         14         0                0      0     0.243           0
# 10 2020-04-20 23019 Penob… 151096   44.5         44         0                0      0     0.291           0
# 11 2020-04-20 23021 Pisca…  16800    4.24         1         0                0      0     0.0595          0
# 12 2020-04-20 23023 Sagad…  35634  140.          16         0                0      0     0.449           0
# 13 2020-04-20 23025 Somer…  50592   12.9         16         0                0      0     0.316           0
# 14 2020-04-20 23027 Waldo   39694   54.4         43         0                0      8     1.08            0
# 15 2020-04-20 23029 Washi…  31490   12.3          2         0                0      0     0.0635          0
# 16 2020-04-20 23031 York   206229  208.         181         0                0      6     0.878           0
# # … with 3 more variables: dHospitalizations <dbl>, dDeaths <dbl>, geometry <MULTIPOLYGON [°]>


BigelowLab/MeCDC documentation built on April 22, 2020, 2:29 p.m.