# Global options options(max.print="75") knitr::opts_chunk$set( eval = TRUE, message = FALSE, warning = FALSE, cache = TRUE, comment = NA, include = TRUE, prompt = FALSE, tidy = TRUE ) knitr::opts_knit$set(width=75)
r runname
if (!is.null(stringdbRes) & length(stringdbRes) != 0) { link <- stringdbRes[['link']] } else { link <- NULL print('No link available.') }
View mapped genes on string-db website
if (!is.null(stringdbRes$GO) & length(stringdbRes$GO) != 0) { table <- stringdbRes$GO %>% dplyr::rename( 'Term Description' = term_description, 'Term ID' = term_id, 'Proteins' = proteins, 'Hits' = hits, 'p-Value' = pvalue, 'p-Value (adj.)' = pvalue_fdr, 'Genes in Term' = hit_term_genes ) table <- makeTermsTable( table = table, genesDelim = ',', datasetURL = "https://www.ebi.ac.uk/QuickGO/term/", caption = NULL, includeColumns = c( 'Term Description', 'Proteins', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) ) table } else { print('No significant enrichment found.') }
if (!is.null(stringdbRes$KEGG) & length(stringdbRes$KEGG) != 0) { table <- stringdbRes$KEGG %>% dplyr::rename( 'Term Description' = term_description, 'Term ID' = term_id, 'Proteins' = proteins, 'Hits' = hits, 'p-Value' = pvalue, 'p-Value (adj.)' = pvalue_fdr, 'Genes in Term' = hit_term_genes ) table <- makeTermsTable( table = table, genesDelim = ',', datasetURL = "https://www.genome.jp/dbget-bin/www_bget?map", caption = NULL, includeColumns = c( 'Term Description', 'Proteins', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) ) table } else { print('No significant enrichment found.') }
if (!is.null(msigdbRes$enricher_result) & !is.null(nrow(msigdbRes$enricher_result))) { plotly::ggplotly( enrichplot::dotplot(msigdbRes$enricher_result) + ggplot2::theme( axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank() ) ) } else { print('No significant enrichment found.') }
#### Cnetplot if (!is.null(msigdbRes$enricher_result) & !is.null(nrow(msigdbRes$enricher_result))) { enrichplot::cnetplot(msigdbRes$enricher_result, categorySize = "p-Value (adj.)", foldChange = namedGeneList, circular = TRUE, colorEdge = TRUE ) } else { print('No significant enrichment found.') }
#### Upsetplot if (!is.null(msigdbRes$enricher_result) & !is.null(nrow(msigdbRes$enricher_result))) { enrichplot::upsetplot(msigdbRes$enricher_result) } else { print('No significant enrichment found.') }
#### Heatplot if (!is.null(msigdbRes$enricher_result) & !is.null(nrow(msigdbRes$enricher_result))) { enrichplot::heatplot(msigdbRes$enricher_result, foldChange = namedGeneList) } else { print('No significant enrichment found.') }
if (!is.null(msigdbRes$enricher_result) & !is.null(nrow(msigdbRes$enricher_result))) { table <- msigdbRes$enricher_result %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) table <- makeTermsTable( table = table, genesDelim = '/', datasetURL = 'https://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp?geneSetName=', caption = "Integrating MSigDB gene-sets with clusterProfiler's Enricher Pathway Analysis", includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) ) table } else { print('No significant enrichment found.') }
if (!is.null(msigdbRes$fgsea_result_asenrich) & !is.null(nrow(msigdbRes$fgsea_result_asenrich))) { plotly::ggplotly( enrichplot::dotplot(msigdbRes$fgsea_result_asenrich) + ggplot2::theme( axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank() ) ) } else { print('No significant enrichment found.') }
#### Cnetplot if (!is.null(msigdbRes$fgsea_result_asenrich) & !is.null(nrow(msigdbRes$fgsea_result_asenrich))) { enrichplot::cnetplot(msigdbRes$fgsea_result_asenrich, categorySize = "p-Value (adj.)", foldChange = namedGeneList, circular = TRUE, colorEdge = TRUE) } else { print('No significant enrichment found.') }
#### Upsetplot if (!is.null(msigdbRes$fgsea_result_asenrich) & !is.null(nrow(msigdbRes$fgsea_result_asenrich))) { enrichplot::upsetplot(msigdbRes$fgsea_result_asenrich) } else { print('No significant enrichment found.') }
#### Heatplot if (!is.null(msigdbRes$fgsea_result_asenrich) & !is.null(nrow(msigdbRes$fgsea_result_asenrich))) { enrichplot::heatplot(msigdbRes$fgsea_result_asenrich, foldChange = namedGeneList) } else { print('No significant enrichment found.') }
if (!is.null(msigdbRes$fgsea_result_asenrich) & !is.null(nrow(msigdbRes$fgsea_result_asenrich))) { table <- msigdbRes$fgsea_result_asenrich %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) table <- makeTermsTable( table = table, genesDelim = '/', datasetURL = 'https://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp?geneSetName=', caption = "Integrating MSigDB gene-sets with FGSEA", includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) ) table } else { print('No significant enrichment found.') }
if (!is.null(reactomeRes) & !is.null(nrow(reactomeRes))) { plotly::ggplotly( enrichplot::dotplot(reactomeRes) + ggplot2::theme( axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank() ) ) } else { print('No significant enrichment found.') }
### Cnetplot if (!is.null(reactomeRes) & !is.null(nrow(reactomeRes))) { enrichplot::cnetplot(reactomeRes, categorySize = "p-Value (adj.)", foldChange = namedGeneList, circular = TRUE, colorEdge = TRUE) } else { print('No significant enrichment found.') }
### Upsetplot if (!is.null(reactomeRes) & !is.null(nrow(reactomeRes))) { enrichplot::upsetplot(reactomeRes) } else { print('No significant enrichment found.') }
### Heatplot if (!is.null(reactomeRes) & !is.null(nrow(reactomeRes))) { enrichplot::heatplot(reactomeRes, foldChange = namedGeneList) } else { print('No significant enrichment found.') }
if (!is.null(reactomeRes) & !is.null(nrow(reactomeRes))) { table <- reactomeRes %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) table <- makeTermsTable( table = table, genesDelim = '/', datasetURL = "https://reactome.org/PathwayBrowser/#/", caption = NULL, includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) ) table } else { print('No significant enrichment found.') }
### DAVID enrichplot::dotplot(davidRes) + scale_y_discrete(labels = function(x) stringr::str_wrap(stringr::str_replace_all(x, "pattern_" , "_"), width = 40))
table <- davidRes %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) table <- makeTermsTable( table = table, genesDelim = '/', datasetURL = '', caption = NULL, includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) ) table
### DOSE enrichplot::dotplot(doseRes) + scale_y_discrete(labels = function(x) stringr::str_wrap(stringr::str_replace_all(x, "pattern_" , "_"), width = 40))
doseRes doseRes@result$ID <- gsub(pattern = 'DOID:', replacement = '', doseRes@result$ID) rownames(doseRes@result) <- doseRes@result$ID table <- doseRes %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) table <- makeTermsTable( table = table, genesDelim = '/', datasetURL = "https://www.ebi.ac.uk/ols/ontologies/doid/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FDOID_", caption = NULL, includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) ) table
### NCG enrichplot::dotplot(ncgRes) + scale_y_discrete(labels = function(x) stringr::str_wrap(stringr::str_replace_all(x, "pattern_" , "_"), width = 40))
table <- ncgRes %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) makeTermsTable( table = table, genesDelim = '/', datasetURL = '', caption = NULL, includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) )
### DGN enrichplot::dotplot(dgnRes) + scale_y_discrete(labels = function(x) stringr::str_wrap(stringr::str_replace_all(x, "pattern_" , "_"), width = 40))
table <- dgnRes %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) makeTermsTable( table = table, genesDelim = '/', datasetURL = "https://www.disgenet.org/browser/0/1/0/", caption = NULL, includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) )
### enrichR table <- enrichrRes %>% as.data.frame() %>% dplyr::rename( 'Term Description' = Description, 'Term ID' = ID, 'geneID' = geneID, 'Hits' = Count, 'p-Value (adj.)' = pvalue, 'p-Value' = p.adjust, 'Genes in Term' = geneID ) makeTermsTable( table = table, genesDelim = '/', datasetURL = "https://www.disgenet.org/browser/0/1/0/", caption = NULL, includeColumns = c( 'Term Description', 'Hits', 'p-Value (adj.)', 'p-Value', 'Genes in Term' ) )
options('max.print' = 500) sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.