Description Usage Arguments Value See Also Examples
Evaluate predictions using pharmacogenomics data. Given a cell line, the function computes the correlation between sRGES and drug sensitivity data taken from CTRP. A higher correlation means a better prediction. The cell line could be computed from computeCellLine.
1 | topLineEval(topline,mysRGES)
|
topline |
list of cell lines to be used for prediction. |
mysRGES |
sRGES data.frame produced by |
The function produces 3 feils in the output directory:
CellLineEval*_drug_sensitivity_insilico_results.txt |
with drug sensitivity information. |
*_auc_insilico_validation.html |
correlation between drug AUC and sRGES in a related cell line. |
*_ic50_insilico_validation.html |
correlation between drug IC50 and sGRES in a related cell line. |
1 2 3 4 5 6 7 8 9 10 11 12 | #select samples
HCC_primary=subset(phenoDF,cancer=='liver hepatocellular carcinoma'&sample.type == 'primary') #select data
case_id=HCC_primary$sample.id #select cases
HCC_adjacent=subset(phenoDF,cancer=='liver hepatocellular carcinoma'&sample.type == 'adjacent'&data.source == 'TCGA') #select data
control_id=HCC_adjacent$sample.id #select cases
#compute DE
res=diffExp(case_id,control_id,source='octad.small',output=TRUE)
res=subset(res,abs(log2FoldChange)>2&padj<0.001)
#Compute sRGES
#sRGES=runsRGES(res,max_gene_size=50)
#Pick up cell lines
#topLineEval(topline = c('HEPG2'),mysRGES = sRGES)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.