This is an HTML report generated by Biome-Shiny. It will generate an HTML file containing all generated plots and tables. Note that any plot whose variables have not been set by the user will use default variables.
Basic information about the loaded dataset.
as.character(summarize_phyloseq_mod(datasetInput()))
as.character(list_sample_variables(datasetInput()))
Heatmap comparing abundance values for each OTU per sample.
plot_heatmap(datasetInput())
Community composition plots show the abundance values for the species belonging to a certain taxonomic rank.
taxglom <- tax_glom(datasetInput(), taxrank=input$v4) if(input$communityPlotFacetWrap == FALSE){ compositionplot <- plot_bar(taxglom, x=input$z1, y="Abundance", fill=input$v4, title=paste0("Abundance by ", input$v4, " in ", input$z1)) + geom_bar(stat="identity") + theme_pubr(base_size = 10, margin = TRUE, legend = "right", x.text.angle = 90) + rremove("xlab") + rremove("ylab") } else { compositionplot <- plot_bar(taxglom, x=input$z1, y="Abundance", fill=input$v4, title=paste0("Abundance by ", input$v4, " in ", input$z1)) + geom_bar(stat="identity") + theme_pubr(base_size = 10, margin = TRUE, legend = "right", x.text.angle = 90) + facet_grid(paste('~',input$z2), scales = "free", space = "free") + rremove("xlab") + rremove("ylab") } if(input$transparentCommunityPlot == TRUE){ compositionplot <- compositionplot + theme(panel.background = element_rect(fill = "transparent", colour = NA), plot.background = element_rect(fill = "transparent", colour = NA), legend.background = element_rect(fill = "transparent", colour = NA), legend.box.background = element_rect(fill = "transparent", colour = NA)) } p <- compositionplot print(p)
taxglom <- tax_glom(microbiome::transform(datasetInput(), "compositional"), taxrank=input$v4) compositionplot <- plot_bar(taxglom, x=input$z1, fill=input$v4, title=paste0("Relative abundance by ", input$v4, " in ", input$z1)) + geom_bar(stat="identity") + guides(fill = guide_legend(ncol = 1)) + scale_y_percent() + theme_pubr(base_size = 10, margin = TRUE, legend = "right", x.text.angle = 90) if(input$communityPlotFacetWrap == TRUE){ compositionplot <- compositionplot + facet_grid(paste('~',input$z2),scales = "free", space = "free") } if(input$transparentCommunityPlot == TRUE){ compositionplot <- compositionplot + theme(panel.background = element_rect(fill = "transparent", colour = NA), plot.background = element_rect(fill = "transparent", colour = NA), legend.background = element_rect(fill = "transparent", colour = NA), legend.box.background = element_rect(fill = "transparent", colour = NA)) } print(compositionplot)
Alpha diversity is an index that measures diversity within a sample. The tables below show only the head, not the full table. To download the the full tables in .csv format, use the download button from Biome-Shiny.
Evenness measures how close, in numbers, each species is in the sample.
a <- as.data.frame(evenness(datasetInput())) colnames(a) <- c("Camargo","Pielou","Simpson","Smith and Wilson's Evar","Bulla") knitr::kable(head(a))
Abundance can be measured either by the absolute number of a given species in the sample (counts) or by a ratio of the species relative to the total number of species in the sample (relative abundance).
a <- as.data.frame(abundances(datasetInput())) knitr::kable(head(a))
a <- as.data.frame(abundances(datasetInput(), transform = "compositional")) knitr::kable(head(a))
a <- estimate_richness(datasetInput(), measures = c("Observed","Chao1","Ace","Shannon","Simpson","InvSimpson","Fisher")) colnames(a) <- c("Observed species", "Chao1", "Standard error (Chao1)", "ACE", "Standard error (ACE)", "Shannon's diversity index","Simpson's diversity index","Inverse Simpson","Fisher's alpha") knitr::kable(head(a))
knitr::kable(head(as.data.frame(sample_data(datasetInput()))))
if(input$richnessPlotGridWrap == FALSE){ richnessplot <- plot_richness( datasetInput(), x = input$x2, measures = input$richnessChoices, color = input$x3 ) + theme_pubr(base_size = 10, margin = TRUE, legend = "right", x.text.angle = 90) } else { richnessplot <- plot_richness( datasetInput(), x = input$x2, measures = input$richnessChoices, color = input$x3 ) + facet_grid(paste('~',input$x),scales = "free", space = "free") + theme_pubr(base_size = 10, margin = TRUE, legend = "right", x.text.angle = 90) } print(richnessplot)
Beta diversity is the index that measures diversity between samples.
Beta diversity ordination plots are measure diversity between samples based on their general microbial composition. Samples which are closer
if (ncol(sample_data(datasetInput())) > 1){ p <- phyloseq::plot_ordination(datasetInput(), ordinateData(), color = input$xb, label = NULL ) + geom_point(size = input$geom.size) + theme_pubr(base_size = 10, margin = TRUE, legend = "right") } else { a <- datasetInput() sample_data(a)[,2] <- sample_data(a)[,1] p <- phyloseq::plot_ordination(a, ordinateData(), color = input$xb, label = NULL ) + geom_point(size = input$geom.size) + theme_pubr(base_size = 10, margin = TRUE, legend = "right") } if(input$transparentOrdinatePlot){ p <- p + theme(panel.background = element_rect(fill = "transparent", colour = NA), plot.background = element_rect(fill = "transparent", colour = NA), legend.background = element_rect(fill = "transparent", colour = NA), legend.box.background = element_rect(fill = "transparent", colour = NA)) } print(p)
The ordination plot for taxa measures the similarity in genetic composition between species. Species which are more similar to eachother are more closely grouped in the plot than species which are more genetically different.
taxaOrdplot <- plot_ordination( datasetInput(), ordinateDataTaxa(), type = "taxa", title = "Ordination Plot", color = input$zb, label = input$xb ) + geom_point(size = input$geom.size.taxa) + theme_pubr(base_size = 10, margin = TRUE, legend = "right") if(input$transparentTaxaOrd){ taxaOrdplot <- taxaOrdplot + theme(panel.background = element_rect(fill = "transparent", colour = NA), plot.background = element_rect(fill = "transparent", colour = NA), legend.background = element_rect(fill = "transparent", colour = NA), legend.box.background = element_rect(fill = "transparent", colour = NA)) }
The PERMANOVA test can be used to determine the importance of a variable in affecting the samples' diversity.
permanova()
homogenietyParams()
A plot determining the OTUs which are most relevant for composition differences in samples.
topFactorPlotParams <- reactive({ otu <- abundances(compositionalInput()) meta <- meta(compositionalInput()) permnumber <- input$permanovaPermutationsFac metadata <- input$permanovaColumnFac column <- meta[[metadata]] permanova <- adonis(t(otu) ~ column, data = meta, permutations = permnumber, method = "bray" ) coef <- coefficients(permanova)["column1",] top.coef <- coef[rev(order(abs(coef)))[1:20]] #top 20 coefficients par(mar = c(3, 14, 2, 1)) p <- barplot(sort(top.coef), horiz = T, las = 1, main = "Top taxa") print(p) }) plot(topFactorPlotParams())
The network plot can be used to find relations between samples.
n <- make_network(compositionalInput(), type = "samples", distance = input$permanovaDistanceMethodNet, max.dist = 0.2) p <- plot_network(n, compositionalInput(), type = "samples", shape = input$permanovaMetaShapeNet, color = input$permanovaMetadataNet, line_weight = 0.4) if(input$transparentPermanova == TRUE){ p <- p + theme(panel.background = element_rect(fill = "transparent", colour = NA), plot.background = element_rect(fill = "transparent", colour = NA), legend.background = element_rect(fill = "transparent", colour = NA), legend.box.background = element_rect(fill = "transparent", colour = NA)) } print(p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.