autoPLIER.fit | R Documentation |
Computes the mean and standard deviation for scaling of a created autoPLIER model.
autoPLIER.fit(ap, ...)
ap |
AutoPLIER object. |
... |
Additional arguments for autoPLIER.fit. See details. |
x_train - Training dataset used to train the model.
pathways - Pathways dataset.
callbacks - List of callbacks to apply during training.
batch_size - Fixed batch size. Default: NULL
.
maxepoch - Max number of epochs. Default: 2000
.
verbose - Verbosity mode. 0 = silent, 1 = progress bar,
2 = one line per epoch. Default: 2
.
valfrac - Fraction of the training dataset used as validation data.
Default: 0.3
.
A Python object called autoplier.model.autoPLIER
that cannot be
viewed.
# Example datasets xtrain <- read.csv(system.file("extdata", "GSE157103_icu_tpm.csv.xz", package = "autoplieR"), row.names = 1) pwy <- read.csv(system.file("extdata", "pathways.csv.xz", package = "autoplieR"), row.names = 1) # Fit the model mod <- autoPLIER(n_components = 50) mod <- autoPLIER.fit(mod, x_train = xtrain, pathways = pwy, maxepoch=100L, verbose = 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.