#' Convert a Factor Loading Vector to a Factor Loading Matrix
#'
#' The function to_loadingmatrix converts a vector of factor loadings
#' to a p x m factor loading matrix in a confirmatory factor analysis
#' model. This creates a loading matrix with no cross-factor loadings.
#'
#' @param loading_vec This is a vector of factor loadings for each item listed
#' in order of item1, item2,..., itemp.
#' @param model is a list object specifying items in each factor in order.
#' See the example.
#' @return to_loadingmatrix will return a p x m matrix of factor loadings
#' according to the confirmatory factor analysis (CFA) model provided,
#' where p is the total number of items, and m
#' is the total number of dimensions.
#'
#' @export
#' @examples
#' library(AUTTT)
#'
#' lambs <- runif(12, .7, .95)
#' mymodel <- list(c(1,2,3,4), c(5,6,7), c(8, 9,10, 11, 12))
#' to_loadingmatrix(loading_vec = lambs, model = mymodel)
to_loadingmatrix <- function(loading_vec, model){
# declare variables
param <- lambs
nvar <- length(param)
df <- matrix(rep(0, nvar),
nrow = nvar, ncol = length(model))
if (is.null(model)){
stop("To turn a vector of factor loadings into a p x m matrix, a model is needed.")
} else {
for (f in 1:length(model)) {
start_n <- min(unlist(model[f]))
end_n <- max(unlist(model[f]))
for (j in start_n : end_n)
df[j,f] <- param[j]
}
}
LAMB <- df
return(LAMB)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.