set_censor_weight_model | R Documentation |
set_censor_weight_model(
object,
censor_event,
numerator,
denominator,
pool_models = NULL,
model_fitter
)
## S4 method for signature 'trial_sequence'
set_censor_weight_model(
object,
censor_event,
numerator,
denominator,
pool_models = c("none", "both", "numerator"),
model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_PP'
set_censor_weight_model(
object,
censor_event,
numerator,
denominator,
pool_models = "none",
model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_ITT'
set_censor_weight_model(
object,
censor_event,
numerator,
denominator,
pool_models = "numerator",
model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_AT'
set_censor_weight_model(
object,
censor_event,
numerator,
denominator,
pool_models = "none",
model_fitter = stats_glm_logit()
)
object |
trial_sequence. |
censor_event |
string. Name of column containing censoring indicator. |
numerator |
A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of censoring weights. |
denominator |
A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of censoring weights. |
pool_models |
Fit pooled or separate censoring models for those treated and those untreated at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except when estimand = "ITT" then default is "numerator"). |
model_fitter |
An object of class |
object
is returned with @censor_weights
set
trial_sequence("ITT") |>
set_data(data = data_censored) |>
set_censor_weight_model(
censor_event = "censored",
numerator = ~ age_s + x1 + x3,
denominator = ~ x3 + x4,
pool_models = "both",
model_fitter = stats_glm_logit(save_path = tempdir())
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.