## ----eval=FALSE---------------------------------------------------------------
# devtools::install_github("clarkevansteenderen/ThermalSampleR")
## ----eval=FALSE---------------------------------------------------------------
# library(ThermalSampleR)
## ----eval=FALSE---------------------------------------------------------------
# shiny::runUrl("https://github.com/clarkevansteenderen/ThermalSampleR_Shiny/archive/main.tar.gz")
## -----------------------------------------------------------------------------
head(ThermalSampleR::coreid_data)
## ----eval=FALSE---------------------------------------------------------------
# # Set a seed to make the results reproducible, for illustrative purposes.
# set.seed(2012)
#
# # Perform simulations
# bt_one = boot_one(
# # Which dataframe does the data come from?
# data = coreid_data,
# # Provide the column name containing the taxon ID
# groups_col = col,
# # Provide the name of the taxon to be tested
# groups_which = "Catorhintha schaffneri_APM",
# # Provide the name of the column containing the response variable (e.g CTmin data)
# response = response,
# # Maximum sample sample to extrapolate to
# n_max = 49,
# # How many bootstrap resamples should be drawn?
# iter = 299)
# dplyr::glimpse(bt_one)
## ----eval=FALSE---------------------------------------------------------------
# plot_one_group(
# # Variable containing the output from running `boot_one` function
# x = bt_one,
# # Minimum sample size to plot
# n_min = 3,
# # Actual size of your existing dataset
# n_max = 15,
# # Colour for your experimental data
# colour_exp = "forestgreen",
# # Colour for the extrapolated predictions
# colour_extrap = "orange",
# # Position of the legend
# legend.position = "right",
# # Change the degree of shading on the graph
# alpha_val = 0.25)
## ----eval=FALSE---------------------------------------------------------------
# # Set a seed to make the results reproducible, for illustrative purposes.
# set.seed(2012)
#
# # Perform simulations
# bt_two <- boot_two(
# # Which dataframe does the data come from?
# data = coreid_data,
# # Provide the column name containing the taxon ID
# groups_col = col,
# # Provide the name of the column containing the response variable (e.g CTmin data)
# response = response,
# # Provide the name of the first taxon to be compared
# group1 = "Catorhintha schaffneri_APM",
# # Provide the name of the second taxon to be compared
# group2 = "Catorhintha schaffneri_NPM",
# # Maximum sample sample to extrapolate to
# n_max = 49,
# # How many bootstrap resamples should be drawn?
# iter = 299)
# dplyr::glimpse(bt_two)
## ----eval=FALSE---------------------------------------------------------------
# plot_two_groups(
# # Variable containing the output from running `boot_two` function
# x = bt_two,
# # Minimum sample size to plot
# n_min = 3,
# # Actual size of your existing dataset
# n_max = 30,
# # Colour for your experimental data
# colour_exp = "blue",
# # Colour for the extrapolated predictions
# colour_extrap = "red",
# # Position of the legend
# legend.position = "right",
# # Change the degree of shading on the graph
# alpha_val = 0.25)
## ----eval=FALSE---------------------------------------------------------------
# tte = equiv_tost(
# # Which dataframe does the data come from?
# data = coreid_data,
# # Provide the column name containing the taxon ID
# groups_col = col,
# # Provide the name of the taxon to be tested
# groups_which = "Catorhintha schaffneri_APM",
# # Provide the name of the column containing the response variable (e.g CTmin data)
# response = response,
# # Define the skewness parameters
# skews = c(1,10),
# # Define the equivalence of subsets to full population CT estimate (unit = degree Celcius)
# equiv_margin = 1,
# # Size of the population to sample (will test subsamples of size pop_n - x against pop_n for equivalence). Defaults to population size = 30
# pop_n = 30
# )
#
# # Inspect ouput
# tte
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.