# Documentation for non-exported functions - pulled and deleted
# wtd.table()
#' Compute the weighted table for the Beta IRF
#' @param x pass the observed item responses to compute the ecdf
#' @param weights pass the posterior distribution to serve as weights
#' @return weighted ecdf values
#'
#'
#'
#' #' Likelihood
#'
#' Compute the loglikelihood of a CLCM for the computation of the jacobian. This computes
#' P(X) - probability of observing that item response pattern given the parameter estimates
#' This is used in the C2 function
#' Pass the same objects as "compute_loglike" PLUS add in the posterior
#' @param post posterior distribution, used to marginalize over the loglikelihood
#' @param param item parameters
#' @param X marix of item responses
#' @param item.type character vector of item types
#' @param eta matrix operationalizing the condensation rules
#' @param categories.j numeric vector of number of categories per item
#' @return matrix of N by 2^K
#' Prior Distribution
#'
#' Compute the log of the prior distribution for use in the EM algorithm
#'
#' @param post posterior distribution
#' @param Z data frame or matrix containing covariates
#' @param type the type of prior distribution - this is selected automatically in the clcm() function
#' depending on what is passed
#' @param reg.formula if a latent regression is estimated, pass the model specification as a character here
#' @return matrix of N by 2^K
#' Objective Function
#'
#' Compute the value of the objective function using vP parameter vector
#' @param vP vector of parameter values
#' @param X matrix of item responses
#' @param item.type_j character vector of item type
#' @param eta matrix operationalizing the condensation rules
#' @param categories.j numeric vector of number of categories per item
#' @param support only used for Beta distribution item type, numeric vector that is the "support'
#' of the weighted ecdf used in the estimation routine.
#' @return matrix of N by 2^K
#' Posterior distribution
#'
#' Compute the posterior distribution of a CLCM
#' @param X matrix of item responses
#' @param item.type character vector of item types
#' @param param list of item parameters
#' @param lprior N by 2^K matrix of log of prior distribution
#' @param eta matrix operationalizing the condensation rules
#' @param categories.j numeric vector of number of categories per item
#' @return matrix of N by 2^K
#' Loglikelihood
#'
#' Compute the loglikelihood of a CLCM
#' @param X matrix of item responses
#' @param item.type character vector of item types
#' @param eta matrix operationalizing the condensation rules
#' @param categories.j numeric vector of number of categories per item
#' @return matrix of N by 2^K
#' Item Parameters
#'
#' Initialize the item parameters for use in the CLCM estimation routine.
#' @param item.type character vector of item types
#' @param X matrix of item responses
#' @return List of item parameters
#' Item Probabilities
#'
#' Compute the item probabilities, latent class by category, for use in the E-step of the
#' EM algorithm
#'
#' @param item.type_j the type of item j
#' @param param_j the item parameters for item j
#' @param j item j
#' @param eta is the condensation rule
#' @param categories.j_j the number of categories in item j
#' @return Item probabilities, latent class by category
#' Alpha
#'
#' Create the Alpha pattern, the unique latent classes.
#' @param K the number of attributes or factors
#' @return 2^K by K matrix of 0/1 indicating the different latent classes
#' C2 Stage 1
#'
#' Compute the contrast matrices for the C2 Function
#' @param mod pass the clcm model
#' @param patt unique item response patterns
#' @param obs.cat.j unique observed categorical answers for item j
#' @return Contrast matrices to compute the C2 function
#' Pseudo Counts
#'
#' Computes the pseudo-counts or expected values as part of the E-step in the EM algorithm
#'
#'
#' @param post posterior distribution
#' @param X the item responses
#' @param j item number
#' @param categories.j_j the number of categories in the item (if applicable)
#' @param item.type_j the type of item
#' @return the expected number of subjects in each latent class responding in each category
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.