library("parallel")
library(PintMF)
library(future.apply)
source("inst/Simulations/00.setup.R")
listBenchmark <- list.files(pathDat)
nbCPU <- 2
for(ii in 5:8){
b <- listBenchmark[ii]
K <- nclust[ii]
pathDat_sim <- Arguments$getReadablePathname(sprintf("%s/%s", pathDat, b))
pathMeth_sub <- Arguments$getReadablePathname(sprintf("%s/%s", pathMeth, b))
print(pathMeth_sub)
list.sim <- list.files(pathDat_sim, full.names = TRUE) %>% lapply(readRDS)
data <- lapply(list.sim, function (ll) ll$data)
remove_zero <- function (dat){
lapply(dat, function(dd){
idx <- which(colSums(dd)==0)
if(length(idx)!=0){
return(dd[, -idx])
}else{
return(dd)
}
})
}
data_filter <- data %>% lapply(remove_zero)
data_t_filter <- lapply(data_filter, function(dd){
dd[[3]] <- log2(dd[[3]]/(1-dd[[3]]))
dd
})
print("my_meth")
my_meth_results <- lapply(data_t_filter, SolveInt, p=K, max.it=5, flavor_mod = "glmnet", init_flavor = "snf")
saveRDS(my_meth_results, file=file.path(pathMeth_sub, sprintf("my_meth_res.rds")))
}
## COCA
library(coca)
for(ii in 1:8){
b <- listBenchmark[ii]
K <- nclust[ii]
pathDat_sim <- Arguments$getReadablePathname(sprintf("%s/%s", pathDat, b))
pathMeth_sub <- Arguments$getReadablePathname(sprintf("%s/%s", pathMeth, b))
print(pathMeth_sub)
list.sim <- list.files(pathDat_sim, full.names = TRUE) %>% lapply(readRDS)
data <- lapply(list.sim, function (ll) ll$data)
remove_zero <- function (dat){
lapply(dat, function(dd){
idx <- which(colSums(dd)==0)
if(length(idx)!=0){
return(dd[, -idx])
}else{
return(dd)
}
})
}
data_filter <- data %>% lapply(remove_zero)
data_t_filter <- lapply(data_filter, function(dd){
dd[[3]] <- log2(dd[[3]]/(1-dd[[3]]))
dd
})
print("coca")
outputBuildMOC <- lapply(data_t_filter, buildMOC, M = 3, K = K, distances = "cor")
# Extract matrix of clusters
moc <- lapply(outputBuildMOC, function (out) out$moc)
# Do Cluster-Of-Clusters Analysis
outputCOCA <- lapply(moc, function (mm) coca(mm, K = K))
# Extract cluster labels
clusterLabels <- lapply(outputCOCA, function (outcoca) outcoca$clusterLabels)
saveRDS(clusterLabels, file=file.path(pathMeth_sub, sprintf("coca_res.rds")))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.