# Run Mocluster 6/10/2020
library("parallel")
library(future.apply)
library(dplyr)
library(CrIMMix)
source("inst/Simulations_OMICSSMILA/00.setup.R")
print(n_batch)
for(ii in 1:n_batch){
pathMeth_sub <- "../data/extdata_PintMF/res_v2/"
data <- file[[ii]][1:3]
remove_zero <- function (dat){
lapply(dat, function(dd){
idx <- which(colSums(dd)==0)
if(length(idx)!=0){
return(dd[, -idx])
}else{
return(dd)
}
})
}
data_filter <- data %>% remove_zero
data_filter_t <- data_filter
data_filter_t[["meth"]] <- log2((data_filter[["meth"]]+0.0001)/(1-(data_filter[["meth"]]+0.0001)))%>% t %>% na.omit %>%t
#mo_results <- data_filter_t %>% IntMultiOmics(K=2,method="Mocluster", k=0.1)
#saveRDS(mo_results, file=file.path(pathMeth_sub, sprintf("Mocluster_res_batch%s.rds",ii)))
sgcca_res <- data_filter_t %>% IntMultiOmics(K=2,method="SGCCA", ncomp = rep(2, 3))
saveRDS(sgcca_res, file=file.path(pathMeth_sub, sprintf("SGCCA_res_batch%s.rds",ii)))
#intnmf_res <- data_filter %>% IntMultiOmics(K=2,method="intNMF")
#saveRDS(intnmf_res, file=file.path(pathMeth_sub, sprintf("intNMF_res_batch%s.rds",ii)))
#icluster_res <- data_filter_t %>% IntMultiOmics(K=2,method="iCluster")
#saveRDS(icluster_res, file=file.path(pathMeth_sub, sprintf("icluster_res_batch%s.rds",ii)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.