View source: R/predict.cv.sparseSVM.R
| predict.cv.sparseSVM | R Documentation | 
This function returns fitted values, coefficients and more from a fitted "cv.sparseSVM" object.
## S3 method for class 'cv.sparseSVM'
predict(object, X, lambda = object$lambda.min, 
        type = c("class","coefficients","nvars"), exact = FALSE, ...)
## S3 method for class 'cv.sparseSVM'
coef(object, lambda = object$lambda.min, exact = FALSE, ...)
| object | Fitted  | 
| X | Matrix of values at which predictions are to be made. Used only for  | 
| lambda | Values of the regularization parameter  | 
| type | Type of prediction.  | 
| exact | If  | 
| ... | Not used. Other arguments to predict. | 
The object returned depends on type.
Congrui Yi and Yaohui Zeng 
Maintainer: Congrui Yi <eric.ycr@gmail.com>
sparseSVM, cv.sparseSVM
X = matrix(rnorm(1000*100), 1000, 100)
b = 3
w = 5*rnorm(10)
eps = rnorm(1000)
y = sign(b + drop(X[,1:10] %*% w + eps))
cv.fit <- cv.sparseSVM(X, y, ncores = 2, seed = 1234)
predict(cv.fit, X)
predict(cv.fit, type = 'nvars')
predict(cv.fit, type = 'coef')
coef(cv.fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.