The goal of ionet is to develop network functionalities specialized for the data generated from input-output tables.
You can install the development version of ionet from GitHub with:
# install.packages("devtools")
devtools::install_github("Carol-seven/ionet")
btw()
: betweenness centrality measure that incorporates available node-specific
auxiliary information based on strongest path.
dijkstra()
: implementation of the Dijkstra’s algorithm to find the shortest paths from
the source node to all nodes in the given network.
| Database | Economies | Years | Sectors | |:-------------------------------------------|:---------:|:---------:|:-------:| | the National Bureau of Statistics of China | China | 2002 | 122 | | | | 2005 | 42 | | | | 2007 | 135 | | | | 2010 | 41 | | | | 2012 | 139 | | | | 2015 | 42 | | | | 2017 | 149 | | | | 2017 | 42 | | | | 2018 | 153 | | | | 2018 | 42 | | | | 2020 | 153 | | | | 2020 | 42 | | OECD Input-Output Tables 2021 edition | China | 1995–2018 | 45 | | OECD Input-Output Tables 2021 edition | Japan | 1995–2018 | 45 |
Xiao, S., Yan, J. and Zhang, P. (2022). Incorporating auxiliary information in betweenness measure for input-output networks. Physica A: Statistical Mechanics and its Applications, 607, 128200. DOI.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.