testDAA: A function to test for differential absolute abundance on a...

testDAAR Documentation

A function to test for differential absolute abundance on a phyloseq object

Description

A function to test for differential absolute abundance on a phyloseq object

Usage

testDAA(Y, ...)

## S4 method for signature 'phyloseq'
testDAA(Y, groupName, FCname, ...)

## S4 method for signature 'matrix'
testDAA(Y, FC, x, S = rowSums(Y), tieBreakRan = TRUE, assumeNormal = TRUE, ...)

Arguments

Y

A phyloseq object, or a data matrix with samples in the rows and OTUs in the columns

...

passed on to the reconsi() function

groupName

A character string, the name of a variable in physeq indicating the grouping factor

FCname

A character string, the name of a variable in physeq containing the total cell count

FC

a vector of length n with total flow cytometry cell counts

x

a grouping factor of length n

S

a vector of library sizes. Will be calculated if not provided

tieBreakRan

A boolean, should ties be broken at random.

assumeNormal

A boolean, should normality be assumed for the null distribution?

Value

See the reconsi() function

Examples

#Test for phyloseq object
library(phyloseq)
data("VandeputteData")
VandeputtePruned = prune_samples(Vandeputte,
samples = sample_names(Vandeputte)[20:40])
testVanDePutte = testDAA(VandeputtePruned, "Health.status", "absCountFrozen",
B = 15)
#Test for matrix
testMat = testDAA(as(otu_table(VandeputtePruned), "matrix"),
get_variable(VandeputtePruned, "Health.status"),
get_variable(VandeputtePruned,"absCountFrozen"), B = 15)

CenterForStatistics-UGent/rransi documentation built on Nov. 13, 2023, 2:07 a.m.