This document includes an outline of the experiments testing the new iterative functions.
We implemented three new functions that include the prior rate as a parameter:
knitr::opts_chunk$set(echo = TRUE)
We ran the following experiments:
Exp. 1: individual optimization:
1. Independent of the trial order, \code{0.5 * evidence, 0.5 * prior rate}
Ran the individual optimization for the following settings:
a) One parameter optimization - Optimize: softness, fixed: obedience = 0, prior rate = 0.5 - Optimize: obedience, fixed: softness = 0, prior rate = 0.5
2. Independent of the trial order, prior rate
Ran the individual optimization for the following settings:
a) One parameter optimization
- Optimize: softness, fixed: obedience = 0, prior rate = 0.5
- Optimize: obedience, fixed: softness = 0, prior rate = 0.5
- Optimize: prior rate, fixed: softness = 0, obedience = 0
b) Two parameter optimization
- Optimize: softness and prior rate, fixed: obedience = 0, prior rate = 0.5
- Optimize: softness and prior rate, fixed: obedience = 0.1, prior rate = 0.5
- Optimize: obedience and prior rate, fixed: softness = 0
3. Dependent on the trial order
Ran the individual optimization for the following settings:
a) One parameter optimization - Optimize: softness, fixed: obedience = 0 - Optimize: softness, fixed: obedience = 0.1 - Optimize: obedience, fixed: softness = 0
b) Two parameter optimization - Optimize: softness and obedience
Exp. 2: global optimization:
1. Independent of the trial order, \code{0.5 * evidence, 0.5 * prior rate}
Ran the individual optimization for the following settings:
a) One parameter optimization - Optimize: softness, fixed: obedience = 0, prior rate = 0.5 - Optimize: obedience, fixed: softness = 0, prior rate = 0.5
2. Independent of the trial order, prior rate
Ran the individual optimization for the following settings:
a) One parameter optimization
- Optimize: softness, fixed: obedience = 0, prior rate = 0.5
- Optimize: obedience, fixed: softness = 0, prior rate = 0.5
- Optimize: prior rate, fixed: softness = 0, obedience = 0
b) Two parameter optimization
- Optimize: softness and prior rate, fixed: obedience = 0, prior rate = 0.5
- Optimize: softness and prior rate, fixed: obedience = 0.1, prior rate = 0.5
- Optimize: obedience and prior rate, fixed: softness = 0
3. Dependent on the trial order
Ran the individual optimization for the following settings: a) One parameter optimization - Optimize: softness, fixed: obedience = 0 - Optimize: softness, fixed: obedience = 0.1 - Optimize: obedience, fixed: softness = 0
b) Two parameter optimization - Optimize: softness and obedience
| | V2: softness | V3: obedience|
|:--------:|:-------------:|:------------:|
| Min. | 0.000e+00 | 0.000e+00 |
| 1st Qu. | 0.000e+00 | 0.000e+00 |
| Median | 0.000e+00 | 9.998e+09 |
| Mean | 3.128e+08 | 6.104e+09 |
| 3rd Qu. | 0.000e+00 | 9.999e+09 |
| Max. | 9.999e+09 | 1.000e+10 |
| | V2: softness | V3: obedience | V4: prior rate | V5:13 pref, obed=0 | V6: 13 pr, obed=0 | V7: 13 pref, obed=0.1 | V8: 13 pr, obed=0.1 | V9: 23 obed, pref=0 | V10: 23 pr, pref=0 | |:--------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:--------:| | Min. | 0.000e+00 | 0.000e+00 | 0.0118 | 0.00000 | 0.0000 | 0.00000 | 0.0000 | 0.000 | 0.006449 | | 1st Qu. | 0.000e+00 | 0.000e+00 | 0.5429 | 0.00000 | 0.3903 | 0.00000 | 0.4435 | 0.001 | 0.561760 | | Median | 0.000e+00 | 9.998e+09 | 0.6767 | 0.00000 | 0.6400 | 0.00855 | 0.6203 | 0.001 | 0.681491 | | Mean | 3.128e+08 | 6.104e+09 | 0.6524 | 0.33530 | 0.5505 | 0.38697 | 0.5497 | 197.471 | 0.658794 | | 3rd Qu. | 0.000e+00 | 9.999e+09 | 0.7963 | 0.09233 | 0.7269 | 0.06801 | 0.7109 | 17.299 | 0.793501 | | Max. | 9.999e+09 | 1.000e+10 | 0.9999 | 9.17083 | 1.0000 | 9.74857 | 1.0000 | 4175.553 | 1.000000 |
| | V2: pref, obed = 0 | V3: pref, obed = 0.1| V4: obedience | V5:12 pref | V6: 12 obed | |:-------:|:-------------:|:------------:|:--------------:|:------------:|:-------------:| | Min. | 0.000e+00 | 0.000e+00 | 0.000e+00 | 0 | 0 | | 1st Qu. | 0.000e+00 | 0.000e+00 | 0.000e+00 | 0 | 0 | | Median | 0.000e+00 | 0.000e+00 | 1.000e+00 | 0 | 0 | | Mean | 5.262e+08 | 4.208e+08 | 4.100e+09 | 654638 | 124852| | 3rd Qu. | 0.000e+00 | 0.000e+00 | 9.999e+09 |0 | 1 | | Max. | 1.000e+10 | 1.000e+10 | 1.000e+10 |60474613 | 8396282|
lm(formula = rsaModel ~ workerData) Residuals: Min 1Q Median 3Q Max -0.6955 -0.1241 -0.0152 0.1293 0.7692 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.135583 0.008548 15.86 <2e-16 *** workerData 0.593248 0.019540 30.36 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1869 on 1138 degrees of freedom Multiple R-squared: 0.4475, Adjusted R-squared: 0.447 F-statistic: 921.8 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1188111 0.1523554 workerData 0.5549096 0.6315872
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.42931 -0.09235 -0.00655 0.08616 0.58796 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.169524 0.006214 27.28 <2e-16 *** workerData 0.491428 0.014204 34.60 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1359 on 1138 degrees of freedom Multiple R-squared: 0.5126, Adjusted R-squared: 0.5122 F-statistic: 1197 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1573318 0.1817153 workerData 0.4635597 0.5192971
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.61115 -0.11592 -0.02787 0.10831 0.64639 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.111091 0.007891 14.08 <2e-16 *** workerData 0.666727 0.018039 36.96 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1726 on 1138 degrees of freedom Multiple R-squared: 0.5455, Adjusted R-squared: 0.5451 F-statistic: 1366 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.09560789 0.1265749 workerData 0.63133334 0.7021197
{width=35%}
{width=35%}
{width=35%}
lm(formula = rsaModel ~ workerData) Residuals: Min 1Q Median 3Q Max -0.6955 -0.1241 -0.0152 0.1293 0.7692 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.135583 0.008548 15.86 <2e-16 *** workerData 0.593248 0.019540 30.36 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1869 on 1138 degrees of freedom Multiple R-squared: 0.4475, Adjusted R-squared: 0.447 F-statistic: 921.8 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1188111 0.1523554 workerData 0.5549096 0.6315872
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.42931 -0.09235 -0.00655 0.08616 0.58796 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.169524 0.006214 27.28 <2e-16 *** workerData 0.491428 0.014204 34.60 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1359 on 1138 degrees of freedom Multiple R-squared: 0.5126, Adjusted R-squared: 0.5122 F-statistic: 1197 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1573318 0.1817153 workerData 0.4635597 0.5192971
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.61115 -0.11592 -0.02787 0.10831 0.64639 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.111091 0.007891 14.08 <2e-16 *** workerData 0.666727 0.018039 36.96 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1726 on 1138 degrees of freedom Multiple R-squared: 0.5455, Adjusted R-squared: 0.5451 F-statistic: 1366 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.09560789 0.1265749 workerData 0.63133334 0.7021197
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.47004 -0.09519 -0.00898 0.08886 0.59859 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.158886 0.006443 24.66 <2e-16 *** workerData 0.523343 0.014728 35.53 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1409 on 1138 degrees of freedom Multiple R-squared: 0.526, Adjusted R-squared: 0.5256 F-statistic: 1263 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1462443 0.1715268 workerData 0.4944470 0.5522394
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.35346 -0.06564 0.00000 0.07310 0.43520 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.23761 0.00464 51.21 <2e-16 *** workerData 0.28716 0.01061 27.07 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1015 on 1138 degrees of freedom Multiple R-squared: 0.3918, Adjusted R-squared: 0.3912 F-statistic: 733 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.2285089 0.2467167 workerData 0.2663460 0.3079666
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.48862 -0.07807 -0.00170 0.06532 0.53286 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.19729 0.00549 35.94 <2e-16 *** workerData 0.40812 0.01255 32.52 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.12 on 1138 degrees of freedom Multiple R-squared: 0.4817, Adjusted R-squared: 0.4812 F-statistic: 1058 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1865219 0.2080650 workerData 0.3834957 0.4327404
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.43849 -0.06961 -0.00380 0.06084 0.44325 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.206848 0.005124 40.37 <2e-16 *** workerData 0.379453 0.011714 32.39 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1121 on 1138 degrees of freedom Multiple R-squared: 0.4797, Adjusted R-squared: 0.4793 F-statistic: 1049 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1967939 0.2169024 workerData 0.3564706 0.4024358
{width=30%}
{width=35%}
{width=35%}
{width=35%}
{width=50%}
{width=35%}
{width=35%}
lm(formula = rsaModel ~ workerData) Residuals: Min 1Q Median 3Q Max -0.53577 -0.15431 -0.03372 0.12938 0.75760 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.194303 0.009186 21.15 <2e-16 *** workerData 0.417091 0.020998 19.86 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.2009 on 1138 degrees of freedom Multiple R-squared: 0.2574, Adjusted R-squared: 0.2568 F-statistic: 394.6 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1762799 0.2123267 workerData 0.3758918 0.4582898
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.50057 -0.13529 -0.02994 0.10369 0.70786 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.211900 0.008157 25.98 <2e-16 *** workerData 0.364301 0.018646 19.54 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1784 on 1138 degrees of freedom Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505 F-statistic: 381.7 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1958953 0.2279043 workerData 0.3277164 0.4008846
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.52404 -0.13298 -0.03373 0.11456 0.73526 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.184497 0.008349 22.1 <2e-16 *** workerData 0.446510 0.019084 23.4 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1826 on 1138 degrees of freedom Multiple R-squared: 0.3248, Adjusted R-squared: 0.3242 F-statistic: 547.4 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1681161 0.2008776 workerData 0.4090655 0.4839538
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.54434 -0.14648 -0.04632 0.13765 0.74541 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.174345 0.009095 19.17 <2e-16 *** workerData 0.476964 0.020791 22.94 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1989 on 1138 degrees of freedom Multiple R-squared: 0.3162, Adjusted R-squared: 0.3156 F-statistic: 526.3 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1565000 0.1921907 workerData 0.4361721 0.5177564
lm(formula = rsaModel2 ~ workerData) Residuals: Min 1Q Median 3Q Max -0.56052 -0.13900 -0.03787 0.12659 0.77862 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.173284 0.008816 19.66 <2e-16 *** workerData 0.480149 0.020153 23.82 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.1928 on 1138 degrees of freedom Multiple R-squared: 0.3328, Adjusted R-squared: 0.3322 F-statistic: 567.6 on 1 and 1138 DF, p-value: < 2.2e-16
2.5 % 97.5 % (Intercept) 0.1559856 0.1905819 workerData 0.4406078 0.5196903
{width=35%}
{width=35%}
{width=35%}
{width=35%}
{width=50%}
Individual optimization: High values of the parameters softness and obedience when optimized together (see Table 3: columns 5 and 6). --> Check for correlation
Global optimization error: Figured out what is causing the error: pp are not integers, as they should be. Debugging shows that pp is [,1][,2][,3]. This is not the case for the individual optimization, only for the global one.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.