knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) set.seed(0)
The goal of AdaptCompExp is to implement algorithms for adaptive computer experiments.
You can install the development version of AdaptCompExp from GitHub with:
# install.packages("devtools") devtools::install_github("CollinErickson/AdaptCompExp")
adapt.concept2.sFFLHD.R6
library(AdaptCompExp)
adapt.concept2.sFFLHD.R6
is an R6 class,
meaning that you create a new instance using
adapt.concept2.sFFLHD.R6$new()
.
Some of the important parameters to see when making a new object:
D: the number of input dimensions
L: the number of points in each batch
func: the function to evaluate inputs
obj: The objective to maximize when selecting points.
des_func: The desirability function.
n0: The number of points to begin with before adding points in batches.
a <- adapt.concept2.sFFLHD.R6$new( D=2,L=3,func=TestFunctions::gaussian1,obj="desirability", des_func=des_func_relmax, n0=20, take_until_maxpvar_below=.9, package="GauPro", design='sFFLHD', selection_method="max_des_red", alpha_des=1 )
To run batches of the experiment, use $run()
.
By default it runs one batch, but you can set how many.
You can also tell it not to make plots.
a$run(2)
a$stats
ca1 <- compare.adaptR6$new(func=TestFunctions::gaussian1, D=2, L=3, batches=2, reps=2, n0=6, obj="desirability", selection_method=c('max_des', 'SMED'), des_func=c('des_func_relmax', 'des_func_relmax') ) ca1$run_all(noplot = T) ca1$plot()
Below is some code that was used to create the results shown in papers.
# In order, these are # 1. sFFLHD (nonadapt) # 2. Sobol (nonadapt) # 3. ALC (no weighting) # 4. grad mean # 5. IMVSE # 6. VSMED # 7. max VSE at point, not over surface objs <- c("nonadapt","nonadapt","desirability","desirability", "desirability", "desirability", "desirability") selection_methods <- c("nonadapt","nonadapt", 'ALC_all_best', 'max_des_red_all_best', 'max_des_red_all_best', 'SMED', 'max_des_all_best') designs <- c('sFFLHD_Lflex', "sobol", 'sFFLHD_Lflex', 'sFFLHD_Lflex', 'sFFLHD_Lflex', 'sFFLHD_Lflex', 'sFFLHD_Lflex') des_funcs <- c('des_func_grad_norm2_mean','des_func_grad_norm2_mean', 'des_func_grad_norm2_mean','des_func_mean_grad_norm2', 'des_func_grad_norm2_mean','des_func_grad_norm2_mean', 'des_func_grad_norm2_mean') source('.//compare_adaptconceptR6.R') require('ggplot2'); require('dplyr'); require('magrittr') run_test <- function(funcstring, reps, batches, D, L, stage1batches, use_parallel=TRUE, seed_start, design_seed_start, startover=FALSE) { # print("c1 doesn't exist, creating new") if (Sys.info()['sysname'] == "Windows") { parallel_cores <- 'detect-1' } else { which_matches <- which(substr(commandArgs(),1,18) == "number_of_threads=") if (length(which_matches) == 1) { parallel_cores <- as.integer(substr(commandArgs()[which_matches], 19, 21)) cat("Found number of cores = ", parallel_cores, '\n') } else { parallel_cores <- 1 cat("Didn't find number of cores to use, setting to 1\n") } } # Test that func and des func match if (test_des_func_grad_norm2_mean(get(funcstring), get(paste0('actual_des_func_grad_norm2_mean_', funcstring)), D) < .99) { stop(paste("actual_des_func_grad_norm2_mean doesn't match for ", funcstring)) } c1 <- compare.adaptR6$new(func=funcstring, reps=reps, batches=batches, D=D, L=L, n0=0, stage1batches=stage1batches, obj=c(objs, "desirability"), selection_method=c(selection_methods, "max_des_red_all_best"), design=c(designs, "sFFLHD_Lflex"), des_func=c(des_funcs, paste0('actual_des_func_grad_norm2_mean_', funcstring) ), # HERE is key, add true one actual_des_func=paste0('actual_des_func_grad_norm2_mean_', funcstring), alpha_des=1, weight_const=0, package="laGP_GauPro_kernel", error_power=2, seed_start=seed_start, design_seed_start=design_seed_start, parallel=use_parallel, # always do parallel for temp_save parallel_cores=parallel_cores, save_output=FALSE ) # Check if already saved c1_file <- paste0(c1$folder_path, "//object.rds") if (file.exists(c1_file) && !startover) { # Load if saved, and recover print("c1 already exists, loading") c1 <- readRDS(c1_file) c1$recover_parallel_temp_save(save_if_any_recovered=TRUE) } else { # Otherwise create new # Now it is created above and overwritten if not used c1$recover_parallel_temp_save(save_if_any_recovered=TRUE) } # Run all, save temps print("Running all c1") already_run <- sum(c1$completed_runs) if (use_parallel) { c1$run_all(parallel_temp_save=TRUE, noplot=TRUE, run_order="reverse") } else { # For not parallel while (TRUE) { try(c1$run_one(noplot=TRUE)) c1$save_self() print(table(c1$completed_runs)) if (all(c1$completed_runs == TRUE)) {break} } } print("Finished c1, saving") if (sum(c1$completed_runs) > already_run) {c1$save_self()} return(c1) } Group.names <- c("obj=nonadapt,selection_method=nonadapt,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean", "obj=nonadapt,selection_method=nonadapt,design=sobol,des_func=des_func_grad_norm2_mean", "obj=desirability,selection_method=ALC_all_best,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean", "obj=desirability,selection_method=max_des_red_all_best,design=sFFLHD_Lflex,des_func=des_func_mean_grad_norm2", "obj=desirability,selection_method=max_des_red_all_best,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean", "obj=desirability,selection_method=SMED,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean", "obj=desirability,selection_method=max_des_all_best,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean", "obj=desirability,selection_method=max_des_red_all_best,design=sFFLHD_Lflex,des_func=actual_des_func_grad_norm2_mean_branin" ) Group.names.clean <- c("sFFLHD", "Sobol", "ALC", "GradMean", "IMVSE", "VSMED", "MaxVal", "TrueGrad") names(Group.names.clean) <- Group.names # reps <- 10 if (F) { reps <- 10 bran1 <- try(run_test(funcstring='branin', D=2, L=2, batches=4*10, reps=reps, stage1batches=3, seed_start=1001000, design_seed_start=1011000)) franke1 <- try(run_test(funcstring='franke', D=2, L=2, batches=4*10, reps=reps, stage1batches=3, seed_start=1002000, design_seed_start=1012000)) lim1 <- try(run_test(funcstring='limnonpoly', D=2, L=2, batches=4*10, reps=reps, stage1batches=3, seed_start=1003000, design_seed_start=1013000)) beam1 <- try(run_test(funcstring='beambending', D=3, L=3, batches=4*10, reps=reps, stage1batches=3, seed_start=1004000, design_seed_start=1014000)) otl1 <- try(run_test(funcstring='OTL_Circuit', D=6, L=4, batches=4*15, reps=reps, stage1batches=4, seed_start=1005000, design_seed_start=1015000)) piston1 <- try(run_test(funcstring='piston', D=7, L=5, batches=4*14, reps=reps, stage1batches=4, seed_start=1006000, design_seed_start=1016000));print("cut batches in half") bh1 <- try(run_test(funcstring='borehole', D=8, L=5, batches=4*16, reps=reps, stage1batches=5, seed_start=1007000, design_seed_start=1017000)) wing1 <- try(run_test(funcstring='wingweight', D=10, L=5, batches=4*20, reps=reps, stage1batches=6, seed_start=1008000, design_seed_start=1018000)) } # Look at results if (F) { bran1$outrawdf$Method <- Group.names.clean[bran1$outrawdf$Group] ggplot(data=bran1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=bran1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=bran1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) franke1$outrawdf$Method <- Group.names.clean[franke1$outrawdf$Group] ggplot(data=franke1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=franke1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=franke1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=franke1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerrorquants.5, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) lim1$outrawdf$Method <- Group.names.clean[lim1$outrawdf$Group] ggplot(data=lim1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=lim1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=lim1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) beam1$outrawdf$Method <- Group.names.clean[beam1$outrawdf$Group] ggplot(data=beam1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=beam1$outrawdf %>% filter(n %in% c(30,60)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=beam1$outrawdf %>% filter(n %in% c(30,60)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) # otl1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds") otl1$outrawdf$Method <- Group.names.clean[otl1$outrawdf$Group] ggplot(data=otl1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=otl1$outrawdf %>% filter(n %in% c(60,120)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=otl1$outrawdf %>% filter(n %in% c(60,120)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) # piston1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds") piston1$outrawdf$Method <- Group.names.clean[piston1$outrawdf$Group] ggplot(data=piston1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=piston1$outrawdf %>% filter(n %in% c(70,140)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=piston1$outrawdf %>% filter(n %in% c(70,140)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) # bh1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds") bh1$outrawdf$Method <- Group.names.clean[bh1$outrawdf$Group] ggplot(data=bh1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=bh1$outrawdf %>% filter(n %in% c(80,160)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=bh1$outrawdf %>% filter(n %in% c(80,160)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) wing1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds") wing1$outrawdf$Method <- Group.names.clean[wing1$outrawdf$Group] ggplot(data=wing1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=wing1$outrawdf %>% filter(n %in% c(100,200)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=wing1$outrawdf %>% filter(n %in% c(100,200)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) } if (F) { # Waterfall waterfall1 <- try(run_test(funcstring='waterfall', D=2, L=2, batches=4*10, reps=reps, stage1batches=3, seed_start=1009000, design_seed_start=1019000)) waterfall1$outrawdf$Method <- Group.names.clean[waterfall1$outrawdf$Group] ggplot(data=waterfall1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=waterfall1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=waterfall1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) # gramacy2Dexp gramacy2Dexp1 <- try(run_test(funcstring='gramacy2Dexp', D=2, L=2, batches=4*10, reps=reps, stage1batches=3, seed_start=1009000, design_seed_start=1019000)) gramacy2Dexp1$outrawdf$Method <- Group.names.clean[gramacy2Dexp1$outrawdf$Group] ggplot(data=gramacy2Dexp1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) # gramacy6D gramacy6D1 <- try(run_test(funcstring='gramacy6D', D=6, L=4, batches=4*15, reps=reps, stage1batches=3, seed_start=1009000, design_seed_start=1019000)) gramacy6D1$outrawdf$Method <- Group.names.clean[gramacy6D1$outrawdf$Group] ggplot(data=gramacy6D1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (c(20,40,80)*3)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (c(20,40,80)*3)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) gramacy6D1$outrawdf %>% filter(n==240) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20) } if (F) { # banana banana1 <- try(run_test(funcstring='banana', D=2, L=2, batches=4*10, reps=reps, stage1batches=3, seed_start=1009000, design_seed_start=1019000)) banana1$outrawdf$Method <- Group.names.clean[banana1$outrawdf$Group] ggplot(data=banana1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) banana1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20) } if (F) { # gramacy2Dexp3hole gramacy2Dexp3hole1 <- try(run_test(funcstring='gramacy2Dexp3hole', D=2, L=2, batches=4*10, reps=reps, stage1batches=3, seed_start=1009000, design_seed_start=1019000)) gramacy2Dexp3hole1$outrawdf$Method <- Group.names.clean[gramacy2Dexp3hole1$outrawdf$Group] ggplot(data=gramacy2Dexp3hole1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) } if (F) { # bananagramacy2Dexp, 6 input dims bangram <- try(run_test(funcstring='bananagramacy2Dexp', D=6, L=4, batches=4*15, reps=reps, stage1batches=3, seed_start=1009000, design_seed_start=1019000)) bangram$outrawdf$Method <- Group.names.clean[bangram$outrawdf$Group] ggplot(data=bangram$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) } if (F) { # bananatimesgramacy2Dexp, 6 input dims bangram2 <- try(run_test(funcstring='bananatimesgramacy2Dexp', D=6, L=4, batches=4*15, reps=reps, stage1batches=3, seed_start=1009000, design_seed_start=1019000)) bangram2$outrawdf$Method <- Group.names.clean[bangram2$outrawdf$Group] ggplot(data=bangram2$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) } if (F) { cf(function(xx) {TestFunctions::levy(c(.5*(xx[1]+.8+.3*xx[2]-.3), xx[2]))}) cf(levy) cf(banana) gcf(function(xx) {gramacy2Dexp(2*xx) + gramacy2Dexp(2*c(xx[1]-.7,xx[2]-.1)) - gramacy2Dexp(2*c(xx[1]-.5,xx[2]-.7))}) } # ==================================================. # ============== Doing 400 reps --------------------------- #=======================================================. reps2 <- 400 if (F) { reps2 <- 400 # Run our new functions, use 400 reps banana1 <- try(run_test(funcstring='banana', D=2, L=2, batches=4*10, reps=reps2, stage1batches=3, seed_start=2000000, design_seed_start=2010000)) banana1$outrawdf$Method <- Group.names.clean[banana1$outrawdf$Group] ggplot(data=banana1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n) banana1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20) levytilt1 <- try(run_test(funcstring='levytilt', D=2, L=2, batches=4*10, reps=reps2, stage1batches=3, seed_start=2001000, design_seed_start=2011000)) levytilt1$outrawdf$Method <- Group.names.clean[levytilt1$outrawdf$Group] ggplot(data=levytilt1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=levytilt1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=levytilt1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n) levytilt1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20) gramacy2Dexp1 <- try(run_test(funcstring='gramacy2Dexp', D=2, L=2, batches=4*10, reps=reps2, stage1batches=3, seed_start=2002000, design_seed_start=2012000)) gramacy2Dexp1$outrawdf$Method <- Group.names.clean[gramacy2Dexp1$outrawdf$Group] ggplot(data=gramacy2Dexp1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n) gramacy2Dexp1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20) gramacy2Dexp3hole1 <- try(run_test(funcstring='gramacy2Dexp3hole', D=2, L=2, batches=4*10, reps=reps2, stage1batches=3, seed_start=2004000, design_seed_start=2014000)) gramacy2Dexp3hole1$outrawdf$Method <- Group.names.clean[gramacy2Dexp3hole1$outrawdf$Group] ggplot(data=gramacy2Dexp3hole1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n) gramacy6D1 <- try(run_test(funcstring='gramacy6D', D=6, L=4, batches=4*15, reps=reps2, stage1batches=3, seed_start=2003000, design_seed_start=2013000)) gramacy6D1$outrawdf$Method <- Group.names.clean[gramacy6D1$outrawdf$Group] ggplot(data=gramacy6D1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n) gramacy6D1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20) } if (F) { # bananagramacy2Dexp, 6 input dims bangram <- try(run_test(funcstring='bananagramacy2Dexp', D=6, L=4, batches=4*15, reps=reps2, stage1batches=3, seed_start=2005000, design_seed_start=2015000)) bangram$outrawdf$Method <- Group.names.clean[bangram$outrawdf$Group] ggplot(data=bangram$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) } if (F) { # bananatimesgramacy2Dexp, 6 input dims bangram2 <- try(run_test(funcstring='bananatimesgramacy2Dexp', D=6, L=4, batches=4*15, reps=reps2, stage1batches=3, seed_start=2006000, design_seed_start=2016000)) bangram2$outrawdf$Method <- Group.names.clean[bangram2$outrawdf$Group] ggplot(data=bangram2$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n) ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.