| IGP_base | R Documentation |
UGP Class providing object with methods for fitting a GP model
UGP Class providing object with methods for fitting a GP model
R6Class object.
Object of R6Class with methods for fitting GP model.
For full documentation of each method go to https://github.com/CollinErickson/UGP/
new(X=NULL, Z=NULL, package=NULL, corr="gauss",
estimate.nugget=T, nugget0=F, ...)This method
is used to create object of this class with X and Z as the data.
The package tells it which package to fit the GP model.
Xall=NULL, Zall=NULL, Xnew=NULL, Znew=NULL, ...This method updates the model, adding new data if given, then running optimization again.
XDesign matrix
ZResponses
NNumber of data points
DDimension of data
NNumber of data points
DDimension of data
.init()IGP_base$.init(...)
.update()IGP_base$.update(...)
.predict()IGP_base$.predict(...)
.predict.se()IGP_base$.predict.se(...)
.predict.var()IGP_base$.predict.var(...)
.delete()IGP_base$.delete(...)
new()IGP_base$new( X = NULL, Z = NULL, package = NULL, corr = "gauss", estimate.nugget = TRUE, nugget0 = 1e-08, ... )
init()IGP_base$init(X = NULL, Z = NULL, ...)
update()IGP_base$update(Xall = NULL, Zall = NULL, Xnew = NULL, Znew = NULL, ...)
predict()IGP_base$predict(XX, se.fit = FALSE, ...)
predict.se()IGP_base$predict.se(XX, ...)
predict.var()IGP_base$predict.var(XX, ...)
grad()IGP_base$grad(XX, num = FALSE)
grad_num()IGP_base$grad_num(XX)
grad_from_theta()IGP_base$grad_from_theta(XX, theta)
grad_norm()IGP_base$grad_norm(XX)
sample()IGP_base$sample(XX, n = 1)
theta()IGP_base$theta()
nugget()IGP_base$nugget()
s2()IGP_base$s2()
mean()IGP_base$mean()
max.var()IGP_base$max.var()
at.max.var()IGP_base$at.max.var(X, val = 0.9)
prop.at.max.var()IGP_base$prop.at.max.var( Xlims = matrix(c(0, 1), nrow = ncol(self$X), ncol = 2, byrow = T), n = 200, val = 0.9 )
plot()IGP_base$plot()
delete()IGP_base$delete(...)
finalize()IGP_base$finalize(...)
clone()The objects of this class are cloneable with this method.
IGP_base$clone(deep = FALSE)
deepWhether to make a deep clone.
n <- 40
d <- 2
n2 <- 20
f1 <- function(x) {sin(2*pi*x[1]) + sin(2*pi*x[2])}
X1 <- matrix(runif(n*d),n,d)
Z1 <- apply(X1,1,f1) + rnorm(n, 0, 1e-3)
X2 <- matrix(runif(n2*d),n2,d)
Z2 <- apply(X2,1,f1)
XX1 <- matrix(runif(10),5,2)
ZZ1 <- apply(XX1, 1, f1)
u <- IGP(package='laGP',X=X1,Z=Z1, corr="gauss")
cbind(u$predict(XX1), ZZ1)
u$predict.se(XX1)
u$update(Xnew=X2,Znew=Z2)
u$predict(XX1)
u$delete()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.