knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) set.seed(5118)
conformalbayes provides functions to construct finite-sample calibrated predictive intervals for Bayesian models, following the approach in Barber et al. (2021). These intervals are calculated efficiently using importance sampling for the leave-one-out residuals. By default, the intervals will also reflect the relative uncertainty in the Bayesian model, using the locally-weighted conformal methods of Lei et al. (2018).
You can install the development version of conformalbayes with:
# install.packages("devtools") devtools::install_github("CoryMcCartan/conformalbayes")
library(rstanarm) library(conformalbayes) data("Loblolly") fit_idx = sample(nrow(Loblolly), 50) d_fit = Loblolly[fit_idx, ] d_test = Loblolly[-fit_idx, ] # fit a simple linear regression m = stan_glm(height ~ sqrt(age), data=d_fit, chains=1, control=list(adapt_delta=0.999), refresh=0) # prepare conformal predictions m = loo_conformal(m) # make predictive intervals pred_ci = predictive_interval(m, newdata=d_test, prob=0.9) print(head(pred_ci)) # are we covering? mean(pred_ci[, "5%"] <= d_test$height & d_test$height <= pred_ci[, "95%"])
Read more on the Getting Started page.
Barber, R. F., Candes, E. J., Ramdas, A., & Tibshirani, R. J. (2021). Predictive inference with the jackknife+. The Annals of Statistics, 49(1), 486-507.
Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2018). Distribution-free predictive inference for regression. Journal of the American Statistical Association, 113(523), 1094-1111.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.