#' RFPCA: Riemannian Functional Principal Component Analysis
#'
#' RFPCA for Functional Data Analysis of Riemannian manifold data
#'
#' References:
#' Dai X, Lin Z, Müller HG. Modeling sparse longitudinal data on Riemannian manifolds. Biometrics. 2021;77(4):1328–41.
#' Lin Z, Yao F. Intrinsic Riemannian functional data analysis. The Annals of Statistics. 2019;47(6):3533–77.
#' Dai X, Müller HG. Principal component analysis for functional data on Riemannian manifolds and spheres. Annals of Statistics. 2018;46(6B):3334–61.
#'
#'
#'
#' Maintainer: Xiongtao Dai \email{xdai@@iastate.edu}
#'
#' @author
#' Xiongtao Dai \email{xdai@@iastate.edu}
#' Zhenhua Lin
#'
#'
#'
#' @docType package
#' @name RFPCA
#' @import manifold
#' @importFrom stats setNames pchisq prcomp cov rnorm rexp rt fitted kernel
#' @importFrom fdapace FPCA ConvertSupport Lwls1D Lwls2D
#' @importFrom utils methods
#' @importFrom abind abind
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.