knitr::opts_chunk$set(echo = TRUE)
library(pwr) pwr.anova.test(k = 3, n = 10, f = .2, sig.level = .05, power = ) pwr.anova.test(k = 3, n = , f = .25, sig.level = .05, power = .95 )
library(tibble) levels <- 4 n_per_level <- 10 # repeat the above many times to compute the F-distribution alternative_data <- tibble(subjects = 1:(levels*n_per_level), IV = as.factor(rep(1:levels, each = n_per_level)), DV = c(rnorm(n_per_level, 0, 1), rnorm(n_per_level, 0, 1), rnorm(n_per_level, 1, 1), rnorm(n_per_level, 0, 1) ) ) aov.out <- aov(DV ~ IV, data = alternative_data) summary(aov.out) library(effectsize) eta_squared(aov.out)
make_a_function <- function(){ return(1) } make_a_function() replicate( 10, make_a_function() )
run_simulation <- function(){ levels <- 4 n_per_level <- 10 # repeat the above many times to compute the F-distribution alternative_data <- tibble(subjects = 1:(levels*n_per_level), IV = as.factor(rep(1:levels, each = n_per_level)), DV = c(rnorm(n_per_level, -.2, 1), rnorm(n_per_level, .2, 1), rnorm(n_per_level, -.4, 1), rnorm(n_per_level, .2, 1) ) ) aov.out <- aov(DV ~ IV, data = alternative_data) summary_out <- summary(aov.out) eta <- eta_squared(aov.out, partial = FALSE) return(eta$Eta2) } run_simulation() replicate(100,run_simulation()) mean(replicate(100,run_simulation()))
run_simulation <- function(){ levels <- 4 n_per_level <- 10 num_questions <- 150 # repeat the above many times to compute the F-distribution alternative_data <- tibble(subjects = 1:(levels*n_per_level), IV = as.factor(rep(1:levels, each = n_per_level)), DV = c(rbinom(n_per_level,num_questions,.75)/num_questions, rbinom(n_per_level,num_questions,.75)/num_questions, rbinom(n_per_level,num_questions,.75)/num_questions, rbinom(n_per_level,num_questions,.80)/num_questions ) ) aov.out <- aov(DV ~ IV, data = alternative_data) summary_out <- summary(aov.out) return(summary_out[[1]]$`Pr(>F)`[1]) } run_simulation() ps <- replicate(100,run_simulation()) length(which(ps < .05))/100
summary_out
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.