#' @title Object specification of the ML pipeline
#'
#' @description A collection of objects along the critical path of analysis process
#' useful for model prototyping and verification.
#'
#' @format A list containing three elements
#' \describe{
#' \item{splits}{an `rsplit` object of the `rsample` package that indicates splitting criteria and data inclusion}
#' \item{recipes}{assortment of `recipes` package recipe objects describing preprocessing steps}
#' \item{models}{a list of `parsnip` model specifications to see hyperparameter tuning criteria}
#' }
#' @source \url{https://github.com/D-Se/ML}
"analysis"
# analysis = list(
# splits = targets::tar_read(init),
# recipes = targets::tar_read(recipes),
# models = targets::tar_read(models)
# )
#' @title temporary airquality data for bookdown
#' @format see `airquality`
#' @source New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data).
data <- NULL
#' @title Best performing ML model in group project
#'
#' @description A quick insight into the best performing model of the bunch
#'
#' @format A list containing three elements
#' \describe{
#' \item{predictions}{a tibble with model performance predictions and observed events.}
#' \item{workflow}{a `workflow` object that specifies exact hyperparameter settings of the best model}
#' }
#' @source \url{https://github.com/D-Se/ML}
"results"
# results = list(
# predictions = targets::tar_read(predictions)[,c(3, 2, 4)] |>
# setNames(c("sample_row", "model_prediction", "actual_observation")),
# workflow = targets::tar_read(winners_post_test)$.workflow[[1]]
# )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.