#' model_select
#'
#' this function takes in a string hyperparameter to determine which random forest model to produce optimal parameters.
#' @param hyperparameter string hyperparameter defining model type. Options include 'classification', 'fast_classification', 'clustering', 'imbalanced', or 'quantile_regression'
#' @return a model type defined for RF_train and RF_test to produce optimal RF parameters
#' @keywords model_select
#' @export
#' @examples
#' hyperparameter = "classification"
#' model_type <- model_select(hyperparameter)
model_select <- function(hyperparameter) {
hyperparameter <- tolower(hyperparameter)
if (hyperparameter == "classification") {
model_type <- rfsrc
} else if (hyperparameter == "fast_classification") {
model_type <- rfsrc.fast
} else if (hyperparameter == "clustering") {
model_type <- sidClustering.rfsrc
} else if (hyperparameter == "imbalanced") {
model_type <- imbalanced.rfsrc
} else if (hyperparameter == "quantile_regression") {
model_type <- quantreg.rfsrc
} else {
stop("Invalid hyperparameter value. Please enter 'classification', 'fast_classification', 'clustering', 'imbalanced', or 'quantile_regression'.")
}
return(model_type)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.