categorical.distinguishable.dyad: Estimating nonindependence in distinguishable standard dyadic...

Description Usage Arguments Details Value Author(s) References See Also

Description

A function for estimating dyadic interdependence in standard dyadic designs with distinguishable dyad members and categorical responses.

Usage

1
   categorical.distinguishable.dyad(dataset, conf.int=0.95)

Arguments

dataset

Original data with dyadic responses.

conf.int

Confidence level in order to estimate the confidence interval for the kappa parameter. It is equal to 0.95 by default.

Details

categorical.distinguishable.dyad estimates dyadic interdependence for any standard dyadic design in which distinguishable members and categorical data are taken into account.

Value

categorical.distinguishable.dyad returns a list containing the following components:

contingency.table

Crosstable for the categorical dyadic data.

kappa

Cohen's kappa statistic for the original data.

alpha

Probability of the parameter not included in the interval estimation.

confidence.interval

Lower and upper bounds of the kappa parameter estimated at 1-alpha confidence level.

z.value

Statistic value for carrying out the statistical test regarding dyadic nonindependence.

standard.error

Standard error for kappa parameter under the null hypothesis of no concordance between dyad members.

two.tailed.p.value

Statistical significance of the z value under the null hypothesis of no concordance between dyad members

Author(s)

David Leiva <dleivaur@ub.edu>, Antonio Solanas <antonio.solanas@ub.edu>, & David A. Kenny <david.kenny@uconn.edu>.

References

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. New York: Guilford Press.

See Also

categorical.indistinguishable.dyad


DLEIVA/DyaDA documentation built on May 6, 2019, 1:17 p.m.