Description Details References
In MoMA
one deflation scheme is provided for CCA.
Let X,Y be two data matrices (properly scaled and centered) of the same number of rows. Each row represents a sample. The penalized CCA problem is formulated as
\min_{u,v} \, u^T X^T Y v + λ_u P_u(u) + λ_v P_v(v)
\text{s.t. } \| u \|_{I+α_u Ω_u} ≤q 1, \| v \|_{I + α_v Ω_v} ≤q 1.
In the discussion below, let u,v be the solution to the above problem. Let c_x = Xu, c_y = Yv. The deflation scheme is as follow:
X ≤ftarrow { X } - { c_x } ≤ft( { c_x } ^ { T } { c_x } \right) ^ { - 1 } { c_x } ^ { T } { X } = ( I - { c_x } ≤ft( { c_x } ^ { T } { c_x } \right) ^ { - 1 } { c_x } ^ { T } )X,
Y ≤ftarrow { Y } - { c_y } ≤ft( { c_y } ^ { T } { c_y } \right) ^ { - 1 } { c_y } ^ { T } { Y } = (I - { c_y } ≤ft( { c_y } ^ { T } { c_y } \right) ^ { - 1 } { c_y } ^ { T } ) Y.
De Bie T., Cristianini N., Rosipal R. (2005) Eigenproblems in Pattern Recognition. In: Handbook of Geometric Computing. Springer, Berlin, Heidelberg
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.