CCA_deflation: The Deflation Scheme for CCA

Description Details References

Description

In MoMA one deflation scheme is provided for CCA.

Details

Let X,Y be two data matrices (properly scaled and centered) of the same number of rows. Each row represents a sample. The penalized CCA problem is formulated as

\min_{u,v} \, u^T X^T Y v + λ_u P_u(u) + λ_v P_v(v)

\text{s.t. } \| u \|_{I+α_u Ω_u} ≤q 1, \| v \|_{I + α_v Ω_v} ≤q 1.

In the discussion below, let u,v be the solution to the above problem. Let c_x = Xu, c_y = Yv. The deflation scheme is as follow:

X ≤ftarrow { X } - { c_x } ≤ft( { c_x } ^ { T } { c_x } \right) ^ { - 1 } { c_x } ^ { T } { X } = ( I - { c_x } ≤ft( { c_x } ^ { T } { c_x } \right) ^ { - 1 } { c_x } ^ { T } )X,

Y ≤ftarrow { Y } - { c_y } ≤ft( { c_y } ^ { T } { c_y } \right) ^ { - 1 } { c_y } ^ { T } { Y } = (I - { c_y } ≤ft( { c_y } ^ { T } { c_y } \right) ^ { - 1 } { c_y } ^ { T } ) Y.

References

De Bie T., Cristianini N., Rosipal R. (2005) Eigenproblems in Pattern Recognition. In: Handbook of Geometric Computing. Springer, Berlin, Heidelberg


DataSlingers/MoMA documentation built on Oct. 30, 2019, 5:55 a.m.