knitr::opts_chunk$set(echo = TRUE)
library(tidyverse) library(caret) ### Schyzo, binary. data_schyzo <- read_csv(file = "~/witchcraft/inst/extdata/schizo.csv") %>% mutate_at(.vars = vars(gain_ratio_1:gain_ratio_11), .funs = ~ as.numeric(.)) %>% mutate_if(is.character, as.factor) preproc_schyzo <- data_schyzo %>% caret::preProcess(method = c("medianImpute", "center", "scale", "zv", "corr")) data_schyzo_final <- data_schyzo %>% dplyr::select(-class) %>% predict(dummyVars(~ ., data = ., drop2nd = T), .) %>% predict(preproc_schyzo, .) %>% as.data.frame() %>% bind_cols(data_schyzo %>% select(class)) split_schyzo <- caret::createDataPartition(y = data_schyzo_final$class, times = 1, list = F) data_schyzo_train <- data_schyzo_final[split_schyzo,] data_schyzo_test <- data_schyzo_final[-split_schyzo,] ### 2 mins test test_schyzo_bohb <- autoRLearn_(df_train = data_schyzo_train, df_test = data_schyzo_test, optimizationAlgorithm = "bohb", models = "naiveBayes", maxTime = 2) test_schyzo_hb <- autoRLearn_(df_train = data_schyzo_train, df_test = data_schyzo_test, optimizationAlgorithm = "hyperband", models = c("naiveBayes", "randomForest", "boosting", "svm", "l2-linear-classifier"), maxTime = 2) test_schyzo_smac <- SmartML::autoRLearn(maxTime = 2, directory = "~/witchcraft/inst/extdata/train_schizo.csv", testDirectory = "~/witchcraft/inst/extdata/test_schizo.csv", classCol = "y", nModels = 5) gc() rm(data_schyzo, preproc_schyzo, data_schyzo_final, split_schyzo, data_schyzo_train, data_schyzo_test, test_schyzo_bohb, test_schyzo_hb, test_schyzo_smac)
data_ta <- read_csv(file = "~/witchcraft/inst/extdata/tae.data", col_names = F) %>% mutate(X5 = as.numeric(X5)) %>% mutate_at(.vars = vars(X1, X2, X3, X4, X6), .funs = as.factor) %>% rename(class = X6) preproc_ta <- data_ta %>% caret::preProcess(method = c("medianImpute", "center", "scale", "nzv", "corr")) data_ta_final <- data_ta %>% dplyr::select(-class) %>% predict(dummyVars(~ ., data = ., drop2nd = T), .) %>% predict(preproc_ta, .) %>% as.data.frame() %>% bind_cols(data_ta %>% select(class)) split_ta <- caret::createDataPartition(y = data_ta_final$class, times = 1, list = F, p = 0.8) data_ta_train <- data_ta_final[split_ta,] data_ta_test <- data_ta_final[-split_ta,] test_ta_bohb <- autoRLearn_(df_train = data_ta_train, df_test = data_ta_test, models = c("naiveBayes", "randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier"), optimizationAlgorithm = "bohb", maxTime = 2, max_iter = 81) test_ta_hb <- autoRlearn_(df_train = data_ta_train, df_test = data_ta_test, optimizationAlgorithm = "hyperband", models = c("naiveBayes", "randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier"), maxTime = 2, max_iter = 81) test_ta_smac <- SmartML::autoRLearn(maxTime = 2, directory = "~/witchcraft/inst/extdata/ta_train.csv", testDirectory = "~/witchcraft/inst/extdata/ta_test.csv", classCol = "class", nModels = 5) gc() rm(data_schyzo, preproc_schyzo, data_schyzo_final, split_schyzo, data_schyzo_train, data_schyzo_test, test_schyzo_bohb, test_schyzo_hb, test_schyzo_smac)
data_bach <- read_csv(file = "~/witchcraft/inst/extdata/jsbach_chorals_harmony.data", col_names = F) %>% select(-X1) %>% mutate(X2 = as.numeric(X2)) %>% mutate_at(.vars = vars(X3:X14), .funs = ~ case_when( .x == "YES" ~ 1, TRUE ~ 0)) %>% mutate_at(.vars = vars(X15, X16, X17), .funs = as.factor) %>% rename(class = X17) preproc_bach <- data_bach %>% caret::preProcess(method = c("medianImpute", "center", "scale", "nzv", "corr")) data_bach_final <- data_bach %>% dplyr::select(-class) %>% predict(dummyVars(~ ., data = ., drop2nd = T), .) %>% predict(preproc_bach, .) %>% as.data.frame() %>% bind_cols(data_bach %>% select(class)) %>% `colnames<-`(value = append(1:(ncol(.) - 1) %>% map_chr(.f = ~ paste("X", .x, sep = "")), "class")) split_bach <- suppressWarnings(caret::createDataPartition(y = data_bach_final$class, times = 1, list = F, p = 0.8)) data_bach_train <- data_bach_final[split_bach,] data_bach_test <- data_bach_final[-split_bach,] test_bach_bohb <- autoRlearn_(df_train = data_bach_train, df_test = data_bach_test, optimizationAlgorithm = "bohb", maxTime = 5, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier"))) test_bach_hb <-(autoRlearn_(df_train = data_bach_train, df_test = data_bach_test, optimizationAlgorithm = "hyperband", maxTime = 5, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier"))) test_bach_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/batch_train.csv", testDirectory = "~/witchcraft/inst/extdata/batch_test.csv", classCol = "class", nModels = 5)
data_dota <- read_csv("~/witchcraft/inst/extdata/dota2Train.csv", col_names = F) %>% rename(class = X1) %>% mutate_at(vars(class:X4), as.factor) %>% mutate_if(.predicate = ~ !is.factor(.x), .funs = as.numeric) %>% select(-X2) %>% sample_frac(0.1) preproc_dota <- data_dota %>% caret::preProcess(method = c("medianImpute", "center", "scale", "nzv", "corr")) preproc_dumvars <- dummyVars("class ~ .", data = data_dota) data_dota_final <- data_dota %>% predict(preproc_dumvars, .) %>% as.data.frame() %>% bind_cols(data_dota %>% select(class),.) %>% predict(preproc_dota, .) split_dota <- suppressWarnings(caret::createDataPartition(y = data_dota_final$class, times = 1, list = F, p = 0.8)) data_dota_train <- data_dota_final[split_dota,] data_dota_test <- data_dota_final[-split_dota,] test_dota_bohb <- autoRlearn_(df_train = data_dota_train, df_test = data_dota_test, optimizationAlgorithm = "bohb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_dota_hb <-autoRlearn_(df_train = data_dota_train, df_test = data_dota_test, optimizationAlgorithm = "hyperband", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_dota_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/dota_train.csv", testDirectory = "~/witchcraft/inst/extdata/dota_test.csv", classCol = "class", nModels = 5)
data_mushroom <- read_csv("~/witchcraft/inst/extdata/mushroom.data", col_names = F) %>% rename(class = X1) %>% mutate_all(as.factor) %>% select(-X7, -X17) preproc_mushroom <- data_mushroom %>% caret::preProcess(method = c("medianImpute", "center", "scale", "nzv", "corr")) preproc_dumvars <- dummyVars("class ~ .", data = data_mushroom) data_mushroom_final <- data_mushroom %>% predict(preproc_dumvars, .) %>% as.data.frame() %>% bind_cols(data_mushroom %>% select(class),.) %>% predict(preproc_mushroom, .) split_mushroom <- suppressWarnings(caret::createDataPartition(y = data_mushroom_final$class, times = 1, list = F, p = 0.8)) data_mushroom_train <- data_mushroom_final[split_mushroom,] data_mushroom_test <- data_mushroom_final[-split_mushroom,] test_mushroom_bohb <- autoRlearn_(df_train = data_mushroom_train, df_test = data_mushroom_test, optimizationAlgorithm = "bohb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_mushroom_hb <-autoRlearn_(df_train = data_mushroom_train, df_test = data_mushroom_test, optimizationAlgorithm = "hyperband", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_mushroom_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/mushroom_train.csv", testDirectory = "~/witchcraft/inst/extdata/mushroom_test.csv", classCol = "class", nModels = 5)
library(BBmisc) data_theorem <- read_csv("~/witchcraft/inst/extdata/train_theorem.csv", col_names = F) %>% bind_rows(read_csv("~/witchcraft/inst/extdata/test_theorem.csv", col_names = F)) %>% #rowwise() %>% mutate_at(.vars = vars(X52, X53, X54, X55, X56, X57), .f = ~ case_when(.x == 1 ~ TRUE, .x == -1 ~ FALSE)) data_theorem_y <- data_theorem %>% select_at(vars(X52:X57)) %>% pmap(.f = ~ which.first(x = c(...)), use.names = F) %>% flatten_dbl() data_theorem_final <- data_theorem %>% select(-X52, -X53, -X54, -X55, -X56, -X57) data_theorem_final$class <- data_theorem_y split_theorem <- suppressWarnings(caret::createDataPartition(y = data_theorem_final$class, times = 1, list = F, p = 0.8)) data_theorem_train <- data_theorem_final[split_theorem,] data_theorem_test <- data_theorem_final[-split_theorem,] test_theorem_hb <- autoRlearn_(df_train = data_theorem_train, df_test = data_theorem_test, optimizationAlgorithm = "hb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_theorem_bohb <- autoRlearn_(df_train = data_theorem_train, df_test = data_theorem_test, optimizationAlgorithm = "bohb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_theorem_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/theorem_train.csv", testDirectory = "~/witchcraft/inst/extdata/theorem_test.csv", classCol = "class", nModels = 5)
data_tictactoe <- read_csv("~/witchcraft/inst/extdata/tic-tac-toe.data", col_names = F) %>% rename(class = X10) preproc_tictactoe <- dummyVars("class ~ .", data_tictactoe) data_tictactoe_final <- data_tictactoe %>% predict(preproc_tictactoe, .) %>% as.data.frame() %>% bind_cols(data_tictactoe %>% select(class)) split_tictactoe <- suppressWarnings(caret::createDataPartition(y = data_tictactoe_final$class, times = 1, list = F, p = 0.8)) data_tictactoe_train <- data_tictactoe_final[split_tictactoe,] data_tictactoe_test <- data_tictactoe_final[-split_tictactoe,] test_tictactoe_hb <- autoRlearn_(df_train = data_tictactoe_train, df_test = data_tictactoe_test, optimizationAlgorithm = "hb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_tictactoe_bohb <- autoRlearn_(df_train = data_tictactoe_train, df_test = data_tictactoe_test, optimizationAlgorithm = "bohb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_tictactoe_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/tictactoe_train.csv", testDirectory = "~/witchcraft/inst/extdata/tictactoe_test.csv", classCol = "class", nModels = 5)
data_anneal <- read_csv("~/witchcraft/inst/extdata/anneal.data", col_names = F) %>% rename(class = X39) %>% mutate_at(.vars = vars(X4, X5, X9), .funs = as.numeric) %>% select(-X38, -X31, -X30, -X29, -X27, -X26, -X24, -X23, -X21, -X19, -X14, -X11, -X2) %>% mutate_if(is.character, as.factor) preproc_anneal <- data_anneal %>% caret::preProcess(method = c("medianImpute", "center", "scale", "nzv", "corr")) preproc_dumvars <- dummyVars("class ~ .", data = data_anneal) data_anneal_final <- data_anneal %>% predict(preproc_dumvars, .) %>% as.data.frame() %>% bind_cols(data_anneal %>% select(class)) split_anneal <- suppressWarnings(caret::createDataPartition(y = data_anneal_final$class, times = 1, list = F, p = 0.8)) data_anneal_train <- data_anneal_final[split_anneal,] data_anneal_test <- data_anneal_final[-split_anneal,] test_anneal_hb <- autoRlearn_(df_train = data_anneal_train, df_test = data_anneal_test, optimizationAlgorithm = "hb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_anneal_bohb <- autoRlearn_(df_train = data_anneal_train, df_test = data_anneal_test, optimizationAlgorithm = "bohb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_anneal_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/anneal_train.csv", testDirectory = "~/witchcraft/inst/extdata/anneal_test.csv", classCol = "class", nModels = 5)
library(farff) data_messidor <- readARFF(path = "~/witchcraft/inst/extdata/messidor_features.arff") %>% mutate_at(vars(0, 1, Class, 18), as.factor) %>% rename(class = Class) preproc_messidor <- data_messidor %>% caret::preProcess(method = c("medianImpute", "center", "scale", "nzv", "corr")) preproc_dumvars <- dummyVars("class ~ .", data = data_messidor) data_messidor_final <- data_messidor %>% predict(preproc_dumvars, .) %>% as.data.frame() %>% bind_cols(data_messidor %>% select(class)) split_messidor <- suppressWarnings(caret::createDataPartition(y = data_messidor_final$class, times = 1, list = F, p = 0.8)) data_messidor_train <- data_messidor_final[split_messidor,] data_messidor_test <- data_messidor_final[-split_messidor,] test_messidor_hb <- autoRlearn_(df_train = data_messidor_train, df_test = data_messidor_test, optimizationAlgorithm = "hyperband", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_messidor_hb <- autoRlearn_(df_train = data_messidor_train, df_test = data_messidor_test, optimizationAlgorithm = "bohb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_anneal_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/messidor_train.csv", testDirectory = "~/witchcraft/inst/extdata/messidor_test.csv", classCol = "class", nModels = 5)
data_avila <- read_csv("~/witchcraft/inst/extdata/avila-ts.txt", col_names = F) %>% bind_rows(read_csv("~/witchcraft/inst/extdata/avila-tr.txt", col_names = F)) %>% rename(class = X11) %>% mutate(class = as.factor(class)) preproc_avila <- data_avila %>% caret::preProcess(method = c("medianImpute", "center", "scale", "nzv", "corr")) preproc_dumvars <- dummyVars("class ~ .", data = data_avila) data_avila_final <- data_avila %>% predict(preproc_dumvars, .) %>% as.data.frame() %>% bind_cols(data_avila %>% select(class)) split_avila <- suppressWarnings(caret::createDataPartition(y = data_avila_final$class, times = 1, list = F, p = 0.8)) data_avila_train <- data_avila_final[split_avila,] data_avila_test <- data_avila_final[-split_avila,] test_avila_hb <- autoRlearn_(df_train = data_avila_train, df_test = data_avila_test, optimizationAlgorithm = "hyperband", maxTime = 1, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_avila_bohb <- autoRlearn_(df_train = data_avila_train, df_test = data_avila_test, optimizationAlgorithm = "bohb", maxTime = 10, models = c("randomForest", "boosting", "svm", "naiveBayes", "l2-linear-classifier")) test_avila_smac <- SmartML::autoRLearn(maxTime = 10, directory = "~/witchcraft/inst/extdata/avila_train.csv", testDirectory = "~/witchcraft/inst/extdata/avila_test.csv", classCol = "class", nModels = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.