boot_model | R Documentation |
Returns optimism correction for absolute fit values
boot_model(
formula,
data,
B = 200,
fit_function = "lm",
metric = if (length(unique(data[, as.character(formula)[2]])) == 2) "AUC" else "RMSE",
predict.control = list(NULL),
...
)
formula |
An object of class "formula" describing the model to be validated |
data |
A data frame containing the variables specified in formula argument |
B |
Number of bootstrap samples |
fit_function |
Name of the model fitting function |
metric |
Performance metric to estimate: RMSE, MSE, MAE or AUC |
predict.control |
Named list of arguments to pass to the predict function of the model |
... |
Further arguments passed to the model fitting function |
Optimism correction values for the selected performance metric
boot_model(Petal.Length ~ Sepal.Width + Species, data=iris)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.