View source: R/tuneHyperparams.R
tuneHyperparams | R Documentation |
Hyperparameter tuning used by NIMIWAE() function
tuneHyperparams(
FUN = NULL,
method = "NIMIWAE",
dataset,
data,
data_types,
data_types_0,
Missing,
g,
rdeponz = F,
learn_r = T,
phi0 = NULL,
phi = NULL,
Cs,
ignorable = F,
covars_r = rep(1, ncol(data)),
arch = "IWAE",
draw_xmiss = T,
sigma = "elu",
h = c(128L, 64L),
n_hidden_layers = c(1L, 2L),
n_hidden_layers_r0 = NULL,
bs = 1000L,
lr = c(0.001, 0.01),
dim_z = as.integer(c(floor(ncol(data)/2), floor(ncol(data)/4))),
niws = 5L,
n_imputations = 5L,
n_epochs = 2002L,
data_types_HIVAE = NULL,
one_hot_max_sizes = NULL,
ohms = NULL,
MissingDatas = NULL,
save_imps = F,
dir_name = ".",
normalize = T
)
FUN |
run_<> function for other methods (not NIMIWAE) |
method |
String specifying the method to tune hyperparameters. Can be "NIMIWAE" (default), "MIWAE", "VAEAC", "HIVAE", "MEAN", or "MF". Hyperparameters are not tuned for "MEAN" or "MF" |
data |
Data matrix (N x P) |
data_types |
vector of length=ncol(data). Valid values: "real", "count", "cat" or "pos" |
Missing |
Missingness mask matrix (N x P) |
g |
Training-validation-test split partitioning |
rdeponz |
TRUE/FALSE: Whether to allow missingness (r) to depend on the latent variable (z). Default is FALSE |
learn_r |
TRUE/FALSE: Whether to learn missingness model via appended NN (TRUE, default), or fit a known logistic regression model (FALSE). If FALSE, 'phi0' and 'phi' must be specified |
phi0 |
(optional) Intercept of logistic regression model, if learn_r = FALSE. |
phi |
(optional) Vector of coefficients of logistic regression model for each input covariates 'covars_r', if learn_r = FALSE. 'phi' must be the same length as the number of input covariates, or 'sum(covars_r)'. |
Cs |
(optional) # factors for categorical variables. Must be of length = # of categorical variables. |
ignorable |
TRUE/FALSE: Whether missingness is ignorable (MCAR/MAR) or nonignorable (MNAR, default). If missingness is known to be ignorable, "ignorable=T" omits missingness model. |
covars_r |
Vector of 1's and 0's of whether each feature is included as covariates in the missingness model. Need not be specified if 'ignorable = T'. Default is using all features as covariates in missingness model. Must be length P (or 'ncol(data)') |
arch |
Architecture of NIMIWAE. Can be "IWAE" or "VAE". "VAE" is specific case of the "IWAE" where only one sample is drawn from the joint posterior of (z, xm). |
sigma |
activation function ("relu" or "elu") |
h |
integer, number of nodes per hidden layer |
n_hidden_layers |
integer, #hidden layers (except missingness model Decoder_r) |
bs |
integer, batch size (training) |
lr |
float, learning rate |
dim_z |
integer, dimensionality of latent z. Default: 5 |
data_types_HIVAE |
Specify for HIVAE only. |
one_hot_max_sizes |
Specify for VAEAC only. |
ohms |
Specify for VAEAC only. |
MissingDatas |
Specify for VAEAC only. |
n_hidden_layers_r |
integer, #hidden layers for Decoder_r (default: 0) |
niw |
integer, number of importance weights (samples drawn from each latent space). Default: 5 |
n_epoch |
integer, maximum number of epochs (without early stop). Default: 2002 |
res object: method's fit on test set, after training on training set and validating best set of hyperparameter values using the validation set.
David K. Lim, deelim@live.unc.edu
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.