The goal of teleporrrt is to construct detailed visuals and convey information from the Teleport API
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("DeclanMolony/teleporrrt")
library(teleporrrt)
You can use the function city_lookup()
to produce a dataframe of all
the cities used in the Teleport API, and their html links.
#city_lookup()
You can use the function country_lookup()
to produce a dataframe of
all the countries used in the Teleport API, and their html links.
#country_lookup()
Or you can use cities_valid()
to check whether a particular city is in
the Teleport API
cities_valid(cities = "Constantinople")
#> [1] "FALSE"
You can use the function city_link()
to produce an html link for a
particular city’s scores to be used for your own analysis:
city_link("Dublin")
#> [1] "https://api.teleport.org/api/urban_areas/slug:dublin/scores/"
You can use the function area_link()
to produce an html link for a
particular countries or cities salaries to be used for your own
analysis:
area_link("San Diego")
#> [1] "https://api.teleport.org/api/urban_areas/slug:san-diego/salaries/"
area_link("United States", "country")
#> [1] "https://api.teleport.org/api/countries/iso_alpha2:US/salaries/"
You can create a dataframe of a single city’s Teleport metrics:
city_dataframe("New York")
#> Housing Cost of Living Startups Venture Capital Travel Connectivity Commute
#> 1 1 2.342 10 10 6.675 5.51925
#> Business Freedom Safety Healthcare Education Environmental Quality Economy
#> 1 8.671 7.022 8.501667 8.0935 5.23375 6.5145
#> Taxation Internet Access Leisure & Culture Tolerance Outdoors
#> 1 3.9205 7.0985 10 6.7125 5.7475
Or create a dataframe comparing two cities:
city_combine_df("Cairo","Zurich")
#> Housing Cost of Living Startups Venture Capital Travel Connectivity
#> Max score 10.000 10 10.0000 10.000 10.0000
#> Min score 0.000 0 0.0000 0.000 0.0000
#> Cairo 10.000 10 5.0985 2.958 3.7575
#> Zurich 1.473 1 6.2035 3.872 7.7335
#> Commute Business Freedom Safety Healthcare Education
#> Max score 10.00000 10.000000 10.0000 10.000000 10.0000
#> Min score 0.00000 0.000000 0.0000 0.000000 0.0000
#> Cairo 3.99025 5.790667 6.7910 2.897333 0.5000
#> Zurich 5.83950 8.888000 9.0665 9.739333 7.2875
#> Environmental Quality Economy Taxation Internet Access
#> Max score 10.0000 10.000 10.0000 10.0000
#> Min score 0.0000 0.000 0.0000 0.0000
#> Cairo 1.1555 2.978 5.1010 2.4050
#> Zurich 8.6430 6.552 6.4285 7.2675
#> Leisure & Culture Tolerance Outdoors
#> Max score 10.0000 10.0000 10.000
#> Min score 0.0000 0.0000 0.000
#> Cairo 6.1855 2.6500 0.500
#> Zurich 4.9655 8.7845 5.401
Or create a dataframe with the closest city to a given Longitude/Latitude coordinates
#Coordinates of the White House
nearest_city(lat = 38.8977, lon = -77.0365)
#> nearest_city distance_km
#> [1,] "Washington, D.C." "0.28774607"
Or create a dataframe of the 25th, 50th, and 75th quantiles of salaries for a given city or country.
US_salary <- salaries_qt("United States", "country")
head(US_salary)
#> job_names percentile_25 percentile_50 percentile_75
#> 1 Account Manager 48847.73 61157.96 76570.52
#> 2 Accountant 46322.46 55013.10 65334.21
#> 3 Administrative Assistant 28149.28 33900.14 40825.88
#> 4 Architect 49398.82 61169.11 75743.91
#> 5 Attorney 61244.91 82706.83 111689.62
#> 6 Business Analyst 53502.00 64180.18 76989.56
You can even create a radar/spider chart comparing two cities’ scores
city_radarchart("Hong Kong","Detroit")
You can input a list of cities you’re interested in comparing based on cost of living, housing, or education, and find out which of the cities has the maximum rating and which has the minimum rating
MaxMinRating(c("Toronto", "Vancouver"), "Cost of Living")
#> [1] "Maximum cost of living rating: 5.271 (Toronto)"
#> [2] "Minimum cost of living rating: 5.259 (Vancouver)"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.