knitr::opts_chunk$set( collapse = TRUE, comment = "#>", # fig.path = "man/figures/README-", out.width = "100%" )
We present the performances of GREMLINS on a simulated multipartite network. GREMLINS includes a function rMBM
to simulate multipartite networks. Mathematical details can be found in @multipartite.
We use the function rMBM
provided in the package to simulate a multipartite network involving $2$ functional groups (namely A and B) of respective sizes
$$n_A = 60, \quad, n_B = 50.$$
A and B are divided respectively into $3$ and $2$ blocks. The sizes of the blocks are generated randomly. For reproductibility, we fix the random seed to an arbitrarily chosen value.
namesFG <- c('A','B') v_NQ <- c(60,50) #size of each FG list_pi = list(c(0.16 ,0.40 ,0.44),c(0.3,0.7)) #proportion of each block in each FG list_pi[[1]]
We assume that we observe $3$ interactions matrices
- A-B : continuous weighted interactions - B-B : binary interactions - A-A : counting directed interactions
E <- rbind(c(1,2),c(2,2),c(1,1)) typeInter <- c( "inc","diradj", "adj") v_distrib <- c('ZIgaussian','bernoulli','poisson')
Note that the distributions may be Bernoulli
, Poisson
, Gaussian
or Laplace
(with null mean). For the Gaussian distribution, a mean and a variance must be given.
We generate randomly the emission parameters $\theta$.
list_theta <- list() list_theta[[1]] <- list() list_theta[[1]]$mean <- matrix(c(6.1, 8.9, 6.6, 9.8, 2.6, 1.0), 3, 2) list_theta[[1]]$var <- matrix(c(1.6, 1.6, 1.8, 1.7 ,2.3, 1.5),3, 2) list_theta[[1]]$p0 <- matrix(c(0.4, 0.1, 0.6, 0.5 , 0.2, 0),3, 2) list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2) m3 <- matrix(c(2.5, 2.6 ,2.2 ,2.2, 2.7 ,3.0 ,3.6, 3.5, 3.3),3,3 ) list_theta[[3]] <- (m3 + t(m3))/2# for symetrisation
We are now ready to simulate the data
library(GREMLINS) dataSim <- rMBM(v_NQ,E , typeInter, v_distrib, list_pi, list_theta, namesFG = namesFG, seed = 4,keepClassif = TRUE) list_Net <- dataSim$list_Net length(list_Net) names(list_Net[[1]]) list_Net[[1]]$typeInter list_Net[[1]]$rowFG list_Net[[1]]$colFG
The model selection and the estimation are performed with the function multipartiteBM
.
res_MBMsimu <- multipartiteBM(list_Net, v_distrib = v_distrib, namesFG = c('A','B'), v_Kinit = c(2,2), nbCores = 2, initBM = FALSE, keep = FALSE)
We can now get the estimated parameters.
res_MBMsimu$fittedModel[[1]]$paramEstim$list_theta$AB$mean
extractClustersMBM
produces the clusters in each functional group.
Cl <- extractClustersMBM(res_MBMsimu)
One may also want to estimate the parameters for given numbers of clusters. The function multipartiteBMFixedModel
is designed for this task.
res_MBMsimu_fixed <- multipartiteBMFixedModel(list_Net, v_distrib = v_distrib, nbCores = 2,namesFG = namesFG, v_K = c(3,2)) res_MBMsimu_fixed$fittedModel[[1]]$paramEstim$v_K extractClustersMBM(res_MBMsimu_fixed)$A
GREMLINS is also able to handle missing data. In the following experiment, we artificially set missing data in the previously simulated matrices.
############# NA data at random in any matrix epsilon = 10/100 list_Net_NA <- list_Net for (m in 1:nrow(E)){ U <- sample(c(1,0),v_NQ[E[m,1]]*v_NQ[E[m,2]],replace=TRUE,prob = c(epsilon, 1-epsilon)) matNA <- matrix(U,v_NQ[E[m,1]],v_NQ[E[m,2]]) list_Net_NA[[m]]$mat[matNA== 1] = NA if (list_Net_NA[[m]]$typeInter == 'adj') { M <- list_Net_NA[[m]]$mat diag(M) <- NA M[lower.tri(M)] = t(M)[lower.tri(M)] list_Net_NA[[m]]$mat <- M } }
res_MBMsimuNA <- multipartiteBM(list_Net_NA, v_distrib = v_distrib, namesFG = c('A','B'), v_Kinit = c(2,2), nbCores = 2, keep = FALSE)
We then have a function to predict the missing edges (probability if binary or intensity if weighted)
pred <- predictMBM(res_MBMsimuNA)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.