Man pages for DescartesResearch/telescope
Hybrid Multi-Step-Ahead Forecasting

buildMetaLevelDatasetBuilds the meta-level data set
calcFrequencyPeriodogramCalcuates the Frequency of the Time Series
calculateAccuraciesCalculates the forecasting error of each method.
calculateCharacteristicsCalculates time series characteristics.
consultrecommenderRetrieves the best method for a given time series.
cubistpredictionTrains a cubist model.
doArimaApply Arima
doXGB.trainXGBoost Model Training
durbinwatsonChecks the auto-correlation of the fitted errors.
evtreepredictionTrains a evtree model.
extract.tsExtract time series information
fitSinFitting a sinus.
fittingModelsFitting the Model of the Trend
forecast.seasonForecasting Season
forecast.trendForecasting Trend
guessFrequencyPeriodogramGuess the Frequency of the Time Series
has.highRemainderChecking Remainder
mapeCalculates forecasting error.
nnetarpredictionTrains a nnetar model.
plottingPlots the forecast
preprocessingPerform the Forecast
randomforestpredictionTrains a random forest model.
removeAnomaliesRemove the Anomalies
rpartpredictionTrains a rpart model.
save.csvSave as CSV
svrpredictionTrains a svr model.
telescope.forecastPerform the Forecast
telescope.trainrecommenderTrains the recommendation system
trainingrecommenderTrains the recommendation system.
xgboostpredictionTrains a xgboost model.
DescartesResearch/telescope documentation built on Oct. 23, 2021, 9:51 a.m.