Description Usage Arguments Value Author(s) Examples
Forecasts a given univariate time series in a hybrid manner and based on time series decomposition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
tvp |
The time value pair: either vector of raw values or n-by-2 matrix (raw values in second column), or time series |
horizon |
The number of values that should be forecast |
rec_model |
Optional parameter: |
natural |
Optional parameter: A flag indicating wheter only natural frequencies (e.g., daily, hourly, ...) or all found frequencies shall be considered. |
boxcox |
Optional parameter: A flag indicating if the Box-Cox transofrmation should be performed. It is not recommend to disable the transformation. TRUE by default. |
doAnomDet |
Optional parameter: Boolean whether anomaly detection shall be used. FALSE by default |
replace.zeros |
Optional parameter: If TRUE, all zeros will be replaced by the mean of the non-zero neighbors. TRUE by default |
use.indicators |
Optional parameter: If TRUE, additional information (e.g. a flag wheter there is a high remainder) will be returned. TRUE by default |
save_fc |
Optional parameter: Boolean wheter the forecast shall be saved as csv. FALSE by default |
csv.path |
Optional parameter: The path for the saved csv-file. The current workspace by default. |
csv.name |
Optional parameter: The name of the saved csvfile. Telescope by default. |
debug |
Optional parameter: If TRUE, debugging information will be displayed. FALSE by default |
The forecast of the input data
Andre Bauer, Marwin Zuefle
1 | telescope.forecast(forecast::taylor, horizon=10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.