View source: R/p_significance.R
p_significance | R Documentation |
Compute the probability of Practical Significance (ps), which can be conceptualized as a unidirectional equivalence test. It returns the probability that effect is above a given threshold corresponding to a negligible effect in the median's direction. Mathematically, it is defined as the proportion of the posterior distribution of the median sign above the threshold.
p_significance(x, ...)
## S3 method for class 'numeric'
p_significance(x, threshold = "default", ...)
## S3 method for class 'get_predicted'
p_significance(
x,
threshold = "default",
use_iterations = FALSE,
verbose = TRUE,
...
)
## S3 method for class 'data.frame'
p_significance(x, threshold = "default", rvar_col = NULL, ...)
## S3 method for class 'brmsfit'
p_significance(
x,
threshold = "default",
effects = "fixed",
component = "conditional",
parameters = NULL,
verbose = TRUE,
...
)
x |
Vector representing a posterior distribution. Can also be a
|
... |
Currently not used. |
threshold |
The threshold value that separates significant from negligible effect, which can have following possible values:
|
use_iterations |
Logical, if |
verbose |
Toggle off warnings. |
rvar_col |
A single character - the name of an |
effects |
Should results for fixed effects ( |
component |
Which type of parameters to return, such as parameters for the conditional model, the zero-inflated part of the model, the dispersion term, etc. See details in section Model Components. May be abbreviated. Note that the conditional component also refers to the count or mean component - names may differ, depending on the modeling package. There are three convenient shortcuts (not applicable to all model classes):
|
parameters |
Regular expression pattern that describes the parameters
that should be returned. Meta-parameters (like |
p_significance()
returns the proportion of a probability
distribution (x
) that is outside a certain range (the negligible
effect, or ROPE, see argument threshold
). If there are values of the
distribution both below and above the ROPE, p_significance()
returns
the higher probability of a value being outside the ROPE. Typically, this
value should be larger than 0.5 to indicate practical significance. However,
if the range of the negligible effect is rather large compared to the
range of the probability distribution x
, p_significance()
will be less than 0.5, which indicates no clear practical significance.
Values between 0 and 1 corresponding to the probability of practical significance (ps).
Possible values for the component
argument depend on the model class.
Following are valid options:
"all"
: returns all model components, applies to all models, but will only
have an effect for models with more than just the conditional model
component.
"conditional"
: only returns the conditional component, i.e. "fixed
effects" terms from the model. Will only have an effect for models with
more than just the conditional model component.
"smooth_terms"
: returns smooth terms, only applies to GAMs (or similar
models that may contain smooth terms).
"zero_inflated"
(or "zi"
): returns the zero-inflation component.
"location"
: returns location parameters such as conditional
,
zero_inflated
, or smooth_terms
(everything that are fixed or random
effects - depending on the effects
argument - but no auxiliary
parameters).
"distributional"
(or "auxiliary"
): components like sigma
,
dispersion
, beta
or precision
(and other auxiliary parameters) are
returned.
For models of class brmsfit
(package brms), even more options are
possible for the component
argument, which are not all documented in detail
here. See also ?insight::find_parameters
.
There is also a plot()
-method implemented in the see-package.
library(bayestestR)
# Simulate a posterior distribution of mean 1 and SD 1
# ----------------------------------------------------
posterior <- rnorm(1000, mean = 1, sd = 1)
p_significance(posterior)
# Simulate a dataframe of posterior distributions
# -----------------------------------------------
df <- data.frame(replicate(4, rnorm(100)))
p_significance(df)
# rstanarm models
# -----------------------------------------------
model <- rstanarm::stan_glm(mpg ~ wt + cyl,
data = mtcars,
chains = 2, refresh = 0
)
p_significance(model)
# multiple thresholds - asymmetric, symmetric, default
p_significance(model, threshold = list(c(-10, 5), 0.2, "default"))
# named thresholds
p_significance(model, threshold = list(wt = 0.2, `(Intercept)` = c(-10, 5)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.