best_predictor_binomial: Using bootstrapping and LASSO algorithm to choose best...

View source: R/best_predictor_binomial.R

best_predictor_binomialR Documentation

Using bootstrapping and LASSO algorithm to choose best predictive features

Description

Using bootstrapping and LASSO algorithm to choose best predictive features

Usage

best_predictor_binomial(
  target_data,
  response = "response",
  features,
  target_data_id = "ID",
  features_id = "ID",
  show_progress = TRUE,
  permutation = 1000,
  propotion = 0.8,
  nfolds = 10,
  plot_vars = 20,
  color = "#999999",
  palette = "Blues",
  discrete_x = 20
)

Arguments

target_data

Data frame contains patient identifier, and target_data

response

binary variables

features

Data frame contains patient identifier and variables after feature engineering

target_data_id

identifier of phenotype data

features_id

identifier of feature matrix

show_progress

show progress bar

permutation

times of iteration

propotion

proportion of patients in each bootstrapping iteration

nfolds

folds to perform cross validation in LASSO

plot_vars

plotting important variables

color

default is steelblue

palette

plotting palette, default is '#999999', using 'RColorBrewer::display.brewer.all()' to see more options

discrete_x

if maximal character length of variables is larger than discrete_x, label will be discrete

Author(s)

Dongqiang Zeng

Examples

res<-best_predictor_binomial(target_data = target, features = features,response = "status",nfolds = 10,permutation = 100)

DongqiangZeng0808/Blasso documentation built on Oct. 12, 2022, 9:44 p.m.