Description Usage Arguments Value Author(s) Examples
A function to calculate fold-change between group comparison; "Test_group" vs "Ref_group"
1 2 3 4 5 6 7 | fold_change(
df_raw = df_raw,
sample_info = sample_info,
Group_column = Group_column,
Test_group = Test_group,
Ref_group = Ref_group
)
|
df_raw |
Matrix of normalized expression data (not Log2 transformed). Genes should be in rows and Sample ID in columns. Row names are required to be valid Gene Symbols |
sample_info |
A dataframe with sample annotation. Sample_info dataframe requires two columns: 1) a column specifying Sample ID (exactly matching Sample ID of data.matrix) and 2) a column specifying group names |
Group_column |
Character vector identical to the column name from sample_info dataframe that specifies group annotation used for the analysis |
Test_group |
Character vector specifying values within the group column (Group_column) that will be used as Test group (samples considered as cases or “intervention” group). |
Ref_group |
Character vector specifying value within the group column (Group_column) that will be used as Reference group |
A matrix of the fold change comparison between "Test_group" vs ""Ref_group"
Darawan Rinchai drinchai@gmail.com
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## data could be downloaded from ExperimentHub("GSE13015")
library(ExperimentHub)
library(SummarizedExperiment)
dat = ExperimentHub()
res = query(dat , "GSE13015")
GSE13015 = res[["EH5429"]]
data_matrix = assay(GSE13015)
sample_ann = data.frame(colData(GSE13015))
FCgroup = fold_change(df_raw = data_matrix[c(1:5),],
sample_info = sample_ann,
Group_column = "Group_test",
Test_group="Sepsis",
Ref_group="Control")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.