Description Usage Format Details Source
A rasterStack containing 21 rasters of climate and soil variables for drylands in the state of Wyoming at 30-arcsecond resolution (WGS84). We defined drylands as cells where a 30-arcsecond (~1 km) resolution aridity index (ratio of precipitation to potential evapotranspiration) defined for the 1970-2000 period (Trabucco & Zomer, 2019) was <0.6.
1 |
A rasterStack with 21 layers, each with the following attributes:
dimensions: 482, 841, 405362, 21 (nrow, ncol, ncell, nlayers)
resolution: 0.008333333, 0.008333333 (x, y)
extent: -111.0583, -104.05, 40.99167, 45.00833 (xmin, xmax, ymin, ymax)
crs: +proj=longlat +datum=WGS84 +no_defs
The 21 layers are described below:
Mean annual temperature, degrees Celsius
Mean diurnal range (mean of max temp - min temp), degrees Celsius
Isothermality (bio2/bio7) (* 100)
Temperature seasonality (standard deviation *100)
Max temperature of warmest month, degrees Celsius
Min temperature of coldest month, degrees Celsius
Temperature annual range (bio5-bio6), degrees Celsius
Mean temperature of the wettest quarter, degrees Celsius
Mean temperature of driest quarter, degrees Celsius
Mean temperature of warmest quarter, degrees Celsius
Mean temperature of coldest quarter, degrees Celsius
Total (annual) precipitation, mm
Precipitation of wettest month, mm
Precipitation of driest month, mm
Precipitation seasonality (coefficient of variation)
Precipitation of wettest quarter, mm
Precipitation of driest quarter, mm
Precipitation of warmest quarter, mm
Precipitation of coldest quarter, mm
Percentage sand content of soil by weight
Percentage clay content of soil by weight
The climate variables ("bioclim_XX") correspond to the 19 bioclim variables
described by Hijman (2017) in biovars
function (also
defined below).
We calculated 30-year (1981 to 2010) normal monthly temperature and
precipitation data at 30-arcsecond resolution from DayMet (Thornton et al.,
2018) using Google Earth Engine (Gorelick et al., 2017). We then calculated 19
bioclimatic variables using the biovars
function in R package dismo
(Hijmans, 2017) We derived soils information for each 30-arcsecond cell from
Soilgrids+ products (Hengl et al., 2017). We downloaded 250 m resolution global
rasters for sand and clay from 0 to 100 cm, cropped each raster to our study
area, aggregated the 250 m cells to ~1 km resolution, and reprojected them to
a 30-arcsecond resolution to match the bioclim variables. The Soilgrids+ data
provide predicted sand and clay content at seven depths: 0 cm, 5 cm, 15 cm,
30 cm, 60 cm, 100 cm, and 200 cm. We derived site specific soil data by
calculating depth-weighted sand and clay content for the top 100 cm using the
following formula (from Hengl et al., (2017)):
(5(L1+L2)+10(L2+L3)+15(L3+L4)+30(L4+L5)+40(L5+L6))/200
where L1 is the clay or sand content at 0 cm, L2 is the clay or sand content at 5 cm, etc. We then extracted the depth-weighed sand and clay contents for each 30-arcsecond cell. Some cells do not have soils data due to the presence of waterbodies or glaciers.
References
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R.
(2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, pp.18-27. https://doi.org/10.1016/j.rse.2017.06.031
Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). dismo: Species Distribution Modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo
Hengl, T., de Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A. Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), p.e0169748. https://doi.org/10.1371/journal.pone.0169748
Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., & Cook, R. B. (2018). Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1328
Trabucco, A., & Zomer, R. (2019). Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. figshare. Fileset. https://doi.org/10.6084/m9.figshare.7504448.v3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.