library(shiny)
shinyUI(fluidPage(
titlePanel("AVENGEME"),
p("Additive Variance Explained and Number of Genetic Effects Method of Estimation"),
p("Luigi Palla and Frank Dudbridge, Am J Hum Genet (2015) 97:250-259"),
fluidRow(
column(2,
numericInput("nsnp",label="Number of SNPs",value=100000),
numericInput("n1",label="Training sample size",value=1000),
numericInput("n2",label="Target sample size",value=1000)
),
column(4,
checkboxInput("fix",label="Identical models in training and target samples",value=FALSE),
checkboxInput("bidirectional",label="Bidirectional estimation",value=FALSE),
checkboxInput("estimateVariance","Estimate variance in training sample",value=TRUE),
conditionalPanel(
condition = "input.estimateVariance == false",
sliderInput("vg1",label="Fix variance to value:",value=0.5,min=0,max=1,step=0.01)
),
conditionalPanel(
condition = "input.fix == false",
checkboxInput("estimateCovariance","Estimate covariance between training and target samples",value=TRUE),
conditionalPanel(
condition = "input.estimateCovariance == false",
sliderInput("cov12",label="Fix covariance to value:",value=0.5,min=0,max=1,step=0.01)
)
),
conditionalPanel(
condition = "input.fix == false & input.bidirectional == true",
checkboxInput("estimateVg2","Estimate variance in target sample",value=TRUE),
conditionalPanel(
condition = "input.estimateVg2 == false",
sliderInput("vg2",label="Fix variance to value:",value=0.5,min=0,max=1,step=0.01)
)
),
checkboxInput("estimatePi0","Estimate proportion of null SNPs in training sample",value=TRUE),
conditionalPanel(
condition = "input.estimatePi0 == false",
sliderInput("pi0",label="Fix null proportion to value:",value=0.95,min=0,max=1,step=0.01)
),
conditionalPanel(
condition = "input.fix == false & input.bidirectional == true",
checkboxInput("estimatePi02","Estimate proportion of null SNPs in target sample",value=TRUE),
conditionalPanel(
condition = "input.estimatePi02 == false",
sliderInput("pi02",label="Fix null proportion to value:",value=0.95,min=0,max=1,step=0.01)
)
)
),
column(3,
checkboxInput("binary1",label="Binary training trait",value=FALSE),
conditionalPanel(
condition = "input.binary1 == true",
sliderInput("prevalence1",label="Training trait prevalence",value=0.5,min=0,max=1,step=0.01),
sliderInput("sampling1",label="Training sampling fraction",value=0.5,min=0,max=1,step=0.01)
),
checkboxInput("binary2",label="Binary target trait",value=FALSE),
conditionalPanel(
condition = "input.binary2 == true",
sliderInput("prevalence2",label="Target trait prevalence",value=0.5,min=0,max=1,step=0.01),
sliderInput("sampling2",label="Target sampling fraction",value=0.5,min=0,max=1,step=0.01)
)
),
column(3,
textInput("pupper",label="P-value selection thresholds in training sample",value="0,1"),
checkboxInput("nested",label="Nested intervals",value=TRUE),
checkboxInput("weighted",label="Weighted score",value=TRUE),
textInput("p",label="P-values or Z-scores between polygenic score and target trait",value=""),
actionButton("go","Go! Estimate polygenic model")
)
),
htmlOutput("polygenescore")
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.