testData | R Documentation |
A simulated dataset consisting of regression coefficients on incidence and prognosis, with their standard errors, for 10,000 variables (eg SNPs). 500 variables have effects on incidence only, 500 on prognosis only, and 500 on both. The effects on incidence and prognosis are independent. The estimates are obtained from linear regression in a simulated dataset of 20,000 individuals.
testData
A data frame with 10,000 rows and 4 variables:
Regression coefficient on incidence
Standard error of xbeta
Regression coefficient on prognosis
Standard error of ybeta
Default analysis with CWLS
indexevent(testData$xbeta,testData$xse,testData$ybeta,testData$yse)
# [1] "Coefficient -0.416773273239147"
# [1] "Standard error 0.0196993218284169"
# [1] "95% CI -0.455383234542707 -0.378163311935586"
# Hedges-Olkin adjustment for regression dilution
# Equivalent to an unweighted regression with CWLS
indexevent(testData$xbeta,testData$xse,testData$ybeta,testData$yse, method="Hedges-Olkin")
# [1] "Coefficient -0.441061156526639"
# [1] "Standard error 0.0211910391231297"
# [1] "95% CI -0.482594830002953 -0.399527483050326"
# SIMEX adjustment with 100 simulations for each step
indexevent(testData$xbeta,testData$xse,testData$ybeta,testData$yse,method="SIMEX",B=100)
# [1] "Coefficient -0.446543628582032"
# [1] "Standard error 0.011576233488927"
# [1] "95% CI -0.470301533547 -0.424923532117153"
# First few unadjusted effects on prognosis
testData$ybeta[1:5]
# [1] 0.032240 0.057070 -0.006959 0.080460 0.032820
# Adjusted effects
indexevent(testData$xbeta,testData$xse,testData$ybeta,testData$yse)$ybeta.adj[1:5]
# [1] 0.05109482 0.06088181 -0.01446092 0.08931226 0.01435694
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.