Description Usage Arguments Details Value Examples
View source: R/gProfiler_cellWeighted_Foldchange.R
This function runs through each list of cell weighted Fold changes (cwFold-changes) and completes both pathway and transcription factor (TF) enrichment.
1 2 3 4 5 6 7 | gProfiler_cellWeighted_Foldchange(
cellWeighted_Foldchange_matrix,
species,
background,
gene_cut,
newGprofiler
)
|
cellWeighted_Foldchange_matrix |
Matrix of cell weighted Fold changes from the deconvolute_and_contextualize functions. |
species |
Human, mouse, or a charcter that is compatible with gProfileR. |
background |
A list of background genes to test against. |
gene_cut |
The top number of genes in pathway analysis. |
newGprofiler |
Using gProfileR or gprofiler2, (T/F). |
This function takes a matrix of cellWeighted_Foldchange and a species (human, mouse, or a character directly compatible with g:ProfileR). Before completing pathway analysis with g:ProfileR. Enriched pathways are stored in a list and returned.
List with the following elements:
BP |
gprofiler enrichment of biological pathways for each cell-type |
TF |
gprofiler enrichment of transcription factors for eachc cell-type. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | data(PBMC_example)
bulk_DE_cors <- PBMC_example$bulk_DE_cors
bulk_normalized <- PBMC_example$bulk_normalized
odds_ratio_in <- PBMC_example$odds_ratio_in
case_grep <- "_female"
control_grep <- "_male"
max_proportion_change <- 10
print_plots <- FALSE
theSpecies <- "human"
norm <- deconvolute_and_contextualize(bulk_normalized, odds_ratio_in,
bulk_DE_cors, case_grep = case_grep,
control_grep = control_grep,
max_proportion_change = max_proportion_change,
print_plots = print_plots,
theSpecies = theSpecies)
background = rownames(bulk_normalized)
STVs <- gProfiler_cellWeighted_Foldchange(norm$cellWeighted_Foldchange, theSpecies,
background, gene_cut = -9, newGprofiler = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.