LocalSagemakerClient | R Documentation |
Used for doing local training and hosting local endpoints. It still needs access to a boto client to interact with S3 but it won't perform any SageMaker call. Implements the methods with the same signature as the boto SageMakerClient.
new()
Initialize a LocalSageMakerClient.
LocalSagemakerClient$new(sagemaker_session = NULL)
sagemaker_session
(sagemaker.session.Session): a session to use to read configurations from, and use its boto client.
create_processing_job()
Creates a processing job in Local Mode
LocalSagemakerClient$create_processing_job( ProcessingJobName, AppSpecification, ProcessingResources, Environment = NULL, ProcessingInputs = NULL, ProcessingOutputConfig = NULL, ... )
ProcessingJobName
(str): local processing job name.
AppSpecification
(dict): Identifies the container and application to run.
ProcessingResources
(dict): Identifies the resources to use for local processing.
Environment
(dict, optional): Describes the environment variables to pass to the container. (Default value = None)
ProcessingInputs
(dict, optional): Describes the processing input data. (Default value = None)
ProcessingOutputConfig
(dict, optional): Describes the processing output configuration. (Default value = None)
...
: Keyword arguments
describe_processing_job()
Describes a local processing job.
LocalSagemakerClient$describe_processing_job(ProcessingJobName)
ProcessingJobName
(str): Processing job name to describe.
(dict) DescribeProcessingJob Response.
create_training_job()
Create a training job in Local Mode.
LocalSagemakerClient$create_training_job( TrainingJobName, AlgorithmSpecification, OutputDataConfig, ResourceConfig, InputDataConfig = NULL, ... )
TrainingJobName
(str): local training job name.
AlgorithmSpecification
(dict): Identifies the training algorithm to use.
OutputDataConfig
(dict): Identifies the location where you want to save the results of model training.
ResourceConfig
(dict): Identifies the resources to use for local model training.
InputDataConfig
(dict, optional): Describes the training dataset and the location where it is stored. (Default value = None)
...
: Variables added to hyperparameters
HyperParameters
(dict) [optional]: Specifies these algorithm-specific parameters to influence the quality of the final model.
describe_training_job()
Describe a local training job.
LocalSagemakerClient$describe_training_job(TrainingJobName)
TrainingJobName
(str): Training job name to describe.
(dict) DescribeTrainingJob Response.
create_transform_job()
Create the transform job.
LocalSagemakerClient$create_transform_job( TransformJobName, ModelName, TransformInput, TransformOutput, TransformResources, ... )
TransformJobName
(str):
ModelName
(str):
TransformInput
(str):
TransformOutput
(str):
TransformResources
(str):
...
(obj):
describe_transform_job()
Describe the transform job.
LocalSagemakerClient$describe_transform_job(TransformJobName)
TransformJobName
(str):
create_model()
Create a Local Model Object.
LocalSagemakerClient$create_model(ModelName, PrimaryContainer, ...)
ModelName
(str): the Model Name
PrimaryContainer
(dict): a SageMaker primary container definition
...
(obj):
describe_model()
Describe the model.
LocalSagemakerClient$describe_model(ModelName)
ModelName
(str):
describe_endpoint_config()
Describe the endpoint configuration.
LocalSagemakerClient$describe_endpoint_config(EndpointConfigName)
EndpointConfigName
(str):
create_endpoint_config()
Create the endpoint configuration.
LocalSagemakerClient$create_endpoint_config( EndpointConfigName, ProductionVariants, Tags = NULL )
EndpointConfigName
(str):
ProductionVariants
(str):
Tags
: (Default value = NULL)
describe_endpoint()
Describe the endpoint.
LocalSagemakerClient$describe_endpoint(EndpointName)
EndpointName
(str):
create_endpoint()
Create the endpoint.
LocalSagemakerClient$create_endpoint( EndpointName, EndpointConfigName, Tags = NULL )
EndpointName
(str):
EndpointConfigName
(str):
Tags
: (Default value = None)
update_endpoint()
Update the endpoint.
LocalSagemakerClient$update_endpoint(EndpointName, EndpointConfigName)
EndpointName
(str):
EndpointConfigName
(str):
delete_endpoint()
Delete the endpoint.
LocalSagemakerClient$delete_endpoint(EndpointName)
EndpointName
(str):
delete_endpoint_config()
Delete the endpoint configuration.
LocalSagemakerClient$delete_endpoint_config(EndpointConfigName)
EndpointConfigName
(str):
delete_model()
Delete the model.
LocalSagemakerClient$delete_model(ModelName)
ModelName
(str):
clone()
The objects of this class are cloneable with this method.
LocalSagemakerClient$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.