TrainingInput | R Documentation |
Amazon SageMaker channel configurations for S3 data sources.
config
A SageMaker “DataSource“ referencing a SageMaker “S3DataSource“.
new()
See AWS documentation on the “CreateTrainingJob“ API for more details on the parameters.
TrainingInput$new( s3_data, distribution = NULL, compression = NULL, content_type = NULL, record_wrapping = NULL, s3_data_type = "S3Prefix", input_mode = NULL, attribute_names = NULL, target_attribute_name = NULL, shuffle_config = NULL )
s3_data
(str): Defines the location of s3 data to train on.
distribution
(str): Valid values: 'FullyReplicated', 'ShardedByS3Key' (default: 'FullyReplicated').
compression
(str): Valid values: 'Gzip', None (default: None). This is used only in Pipe input mode.
content_type
(str): MIME type of the input data (default: None).
record_wrapping
(str): Valid values: 'RecordIO' (default: None).
s3_data_type
(str): Valid values: 'S3Prefix', 'ManifestFile', 'AugmentedManifestFile'. If 'S3Prefix', “s3_data“ defines a prefix of s3 objects to train on. All objects with s3 keys beginning with “s3_data“ will be used to train. If 'ManifestFile' or 'AugmentedManifestFile', then “s3_data“ defines a single S3 manifest file or augmented manifest file (respectively), listing the S3 data to train on. Both the ManifestFile and AugmentedManifestFile formats are described in the SageMaker API documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/API_S3DataSource.html
input_mode
(str): Optional override for this channel's input mode (default: None). By default, channels will use the input mode defined on “sagemaker.estimator.EstimatorBase.input_mode“, but they will ignore that setting if this parameter is set. * None - Amazon SageMaker will use the input mode specified in the “Estimator“ * 'File' - Amazon SageMaker copies the training dataset from the S3 location to a local directory. * 'Pipe' - Amazon SageMaker streams data directly from S3 to the container via a Unix-named pipe.
attribute_names
(list[str]): A list of one or more attribute names to use that are found in a specified AugmentedManifestFile.
target_attribute_name
(str): The name of the attribute will be predicted (classified) in a SageMaker AutoML job. It is required if the input is for SageMaker AutoML job.
shuffle_config
(ShuffleConfig): If specified this configuration enables shuffling on this channel. See the SageMaker API documentation for more info: https://docs.aws.amazon.com/sagemaker/latest/dg/API_ShuffleConfig.html
format()
format class
TrainingInput$format()
clone()
The objects of this class are cloneable with this method.
TrainingInput$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.