sample_lambda_and_zeros: Sampling step for lambda and binary, sparsity-inducing zero...

Description Usage Arguments Value

View source: R/RcppExports.R

Description

Sampling step for lambda and binary, sparsity-inducing zero matrix

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
sample_lambda_and_zeros(
  x,
  lambda,
  zeros,
  omega,
  alpha,
  gamma_k,
  dc,
  ibp_a,
  ibp_b,
  tau,
  sparse,
  infinite
)

Arguments

x

A multivariate Gaussian copula matrix of dimenion N x P.

lambda

A standard multivariate normal matrix of factor loadings of dimension P x K.

zeros

A binary, sparsity inducing matrix of dimenion P x K.

omega

A standard multivariate normal matrix of factor scores of dimenion N x K.

alpha

A numeric vector of item-intercepts of length P.

gamma_k

A numeric vector of factor precisions of length K.

dc

A integer vector of counts for the number of times each dimensions has been sampled.

ibp_a

A scalar double, Indian Buffet Process beta parameter.

ibp_b

A scalar double, Indian Buffet Process beta parameter.

tau

A tunable hyperparameter for the poisson draws of new dishes to be sampled.

sparse

A boolean indicating whether to include sparsity-inducing prior.

infinite

A boolen indicating whether to sample new potential dishes at each step.

Value

zeros A binary, sparsity inducing matrix of dimenion P x K.

lambda A standard multivariate normal matrix of factor loadings of dimension P x K.

dc A integer vector of counts for the number of times each dimensions has been sampled.


EandrewJones/mmBPFA documentation built on Feb. 14, 2021, 11:17 p.m.